Unidad de Toxicologia Experimental, Universidad de Ciencias Medicas de Villa Clara, Santa Clara, 50200, Cuba.
Unidad de Investigacion de Diseno de Farmacos y Conectividad Molecular, Departamento de Quimica Física, Facultad de Farmacia, Universitat de Valencia, Valencia, Spain.
Curr Top Med Chem. 2018;18(27):2347-2354. doi: 10.2174/1568026619666181130121558.
Leishmaniasis is a poverty-related disease endemic in 98 countries worldwide, with morbidity and mortality increasing daily. All currently used first-line and second-line drugs for the treatment of leishmaniasis exhibit several drawbacks including toxicity, high costs and route of administration. Consequently, the development of new treatments for leishmaniasis is a priority in the field of neglected tropical diseases. The aim of this work is to develop computational models those allow the identification of new chemical compounds with potential anti-leishmanial activity. A data set of 116 organic chemicals, assayed against promastigotes of Leishmania amazonensis, is used to develop the theoretical models. The cutoff value to consider a compound as active one was IC50≤1.5μM. For this study, we employed Dragon software to calculate the molecular descriptors and WEKA to obtain machine learning (ML) models. All ML models showed accuracy values between 82% and 91%, for the training set. The models developed with k-nearest neighbors and classification trees showed sensitivity values of 97% and 100%, respectively; while the models developed with artificial neural networks and support vector machine showed specificity values of 94% and 92%, respectively. In order to validate our models, an external test-set was evaluated with good behavior for all models. A virtual screening was performed and 156 compounds were identified as potential anti-leishmanial by all the ML models. This investigation highlights the merits of ML-based techniques as an alternative to other more traditional methods to find new chemical compounds with anti-leishmanial activity.
利什曼病是一种与贫困相关的疾病,在全球 98 个国家流行,发病率和死亡率日益增加。目前用于治疗利什曼病的所有一线和二线药物都存在一些缺点,包括毒性、高成本和给药途径。因此,开发治疗利什曼病的新疗法是被忽视的热带病领域的优先事项。本工作旨在开发计算模型,以鉴定具有潜在抗利什曼活性的新化合物。使用了一组针对利什曼原虫的 116 种有机化合物来开发理论模型。将化合物视为活性化合物的截止值为 IC50≤1.5μM。在这项研究中,我们使用 Dragon 软件计算分子描述符,并使用 WEKA 获得机器学习 (ML) 模型。所有 ML 模型在训练集上的准确率在 82%到 91%之间。使用 k-最近邻和分类树开发的模型分别具有 97%和 100%的敏感性;而使用人工神经网络和支持向量机开发的模型分别具有 94%和 92%的特异性。为了验证我们的模型,使用外部测试集对所有模型进行了良好的评估。进行了虚拟筛选,所有 ML 模型都鉴定了 156 种具有抗利什曼活性的潜在化合物。这项研究强调了基于机器学习的技术作为替代其他更传统方法的优点,用于寻找具有抗利什曼活性的新化合物。