Laboratori de Càlcul Numèric (LaCàN), Universitat Politècnica de Catalunya (UPC), Campus Nord UPC-C2, E-08034 Barcelona, Catalonia, Spain.
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain and Centro de Investigación en Ciencia e Ingeniera de Materiales, Universidad de Costa Rica, San José 11501, Costa Rica.
Phys Rev Lett. 2018 Nov 16;121(20):205502. doi: 10.1103/PhysRevLett.121.205502.
The origin of "giant" flexoelectricity, orders of magnitude larger than theoretically predicted, yet frequently observed, is under intense scrutiny. There is mounting evidence correlating giant flexoelectriclike effects with parasitic piezoelectricity, but it is not clear how piezoelectricity (polarization generated by strain) manages to imitate flexoelectricity (polarization generated by strain gradient) in typical beam-bending experiments, since in a bent beam the net strain is zero. In addition piezoelectricity changes sign under space inversion but giant flexoelectricity is insensitive to space inversion, seemingly contradicting a piezoelectric origin. Here we show that, if a piezoelectric material has its piezoelectric coefficient asymmetrically distributed across the sample, it will generate a nonzero bending-induced polarization impossible to distinguish from true flexoelectricity even by inverting the sample. The effective flexoelectric coefficient caused by piezoelectricity is functionally identical to, and often larger than, intrinsic flexoelectricity: our calculations show that, for standard perovskite ferroelectrics, even a tiny gradient of piezoelectricity (1% variation of piezoelectric coefficient across 1 mm) is sufficient to yield a giant effective flexoelectric coefficient of 1 μC/m, three orders of magnitude larger than the intrinsic expectation value.
“巨型”挠曲电效应的起源备受关注,其大小比理论预测的要大几个数量级,但却经常被观察到。越来越多的证据表明,巨型挠曲电效应与寄生压电效应有关,但目前尚不清楚压电效应(应变产生的极化)如何在典型的弯曲梁实验中模仿挠曲电效应(应变梯度产生的极化),因为在弯曲的梁中,总应变为零。此外,压电效应在空间反演下会改变符号,但巨型挠曲电效应对空间反演不敏感,这似乎与压电起源相矛盾。在这里,我们表明,如果压电材料的压电系数在样品中不对称分布,它将产生一个非零的弯曲诱导极化,即使通过反转样品也无法将其与真正的挠曲电效应区分开来。由压电效应引起的有效挠曲电系数在功能上与固有挠曲电系数相同,并且通常大于固有挠曲电系数:我们的计算表明,对于标准的钙钛矿铁电体,即使压电系数只有微小的梯度(在 1 毫米范围内变化 1%),也足以产生 1 μC/m 的巨大有效挠曲电系数,比固有期望值大三个数量级。