Suppr超能文献

一种用于星载沿轨推扫式卫星影像的快速密集特征匹配模型。

A Fast Dense Feature-Matching Model for Cross-Track Pushbroom Satellite Imagery.

机构信息

Faculty of Information Technology, Macau University of Science and Technology, Macau, China.

The Space Science Institute/Lunar and Planetary Science Laboratory, Macau University of Science and Technology, Macau, China.

出版信息

Sensors (Basel). 2018 Nov 29;18(12):4182. doi: 10.3390/s18124182.

Abstract

Feature-based matching can provide high robust correspondences and it is usually invariant to image scale and rotation. Nevertheless, in remote sensing, the robust feature-matching algorithms often require costly computations for matching dense features extracted from high-resolution satellite images due to that the computational complexity of conventional feature-matching model is O ( N 2 ) . For replacing the conventional feature-matching model, a fast dense (FD) feature-matching model is proposed in this paper. The FD model reduces the computational complexity to linear by splitting the global one-to-one matching into a set of local matchings based on a classic frame-based rectification method. To investigate the possibility of applying the classic frame-based method on cross-track pushbroom images, a feasibility study is given by testing the frame-based method on 2.1 million independent experiments provided by a pushbroom based feature-correspondences simulation platform. Moreover, to improve the stability of the frame-based method, a correspondence-direction-constraint algorithm is proposed for providing the most favourable seed-matches/control-points. The performances of the FD and the conventional models are evaluated on both an automatic feature-matching evaluation platform and real satellite images. The evaluation results show that, for the feature-matching algorithms which have high computational complexity, their running time for matching dense features reduces from hours level to minutes level when they are operated on the FD model. Meanwhile, based the FD method, feature-matching algorithms can achieve comparable matching results as they achieved based on the conventional model.

摘要

基于特征的匹配可以提供高鲁棒的对应关系,并且通常对图像的尺度和旋转具有不变性。然而,在遥感中,由于从高分辨率卫星图像中提取密集特征的传统特征匹配模型的计算复杂度为 O ( N 2 ) ,因此鲁棒特征匹配算法通常需要昂贵的计算。为了替代传统的特征匹配模型,本文提出了一种快速密集(FD)特征匹配模型。该模型通过基于经典基于帧的校正方法将全局一对一匹配分割成一组局部匹配,将计算复杂度降低到线性。为了研究经典基于帧的方法在交叉轨迹推扫式图像上应用的可能性,通过在基于推扫式的特征对应模拟平台上提供的 210 万个独立实验中测试基于帧的方法,进行了可行性研究。此外,为了提高基于帧的方法的稳定性,提出了一种对应方向约束算法,用于提供最有利的种子匹配/控制点。在自动特征匹配评估平台和真实卫星图像上评估了 FD 和传统模型的性能。评估结果表明,对于计算复杂度较高的特征匹配算法,当它们在 FD 模型上运行时,匹配密集特征的运行时间从小时级降低到分钟级。同时,基于 FD 方法,特征匹配算法可以获得与基于传统模型相当的匹配结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bf/6308846/0641f3b0810d/sensors-18-04182-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验