Suppr超能文献

一种融合CPS去噪的遥感图像密集匹配方法。

A dense matching method for remote sensing images fused with CPS denoising.

作者信息

Zhu Bo, Tan Xiao, Li Houpu

机构信息

College of Electrical Engineering, Naval University of Engineering, Wuhan, 430033, China.

Department of Operational Research and Programming, Naval University of Engineering, Wuhan, 430033, China.

出版信息

Sci Rep. 2024 Apr 23;14(1):9309. doi: 10.1038/s41598-024-59980-x.

Abstract

Dense matching of remote sensing images is crucial for 3D reconstruction. This study proposes an enhanced dense matching method employing the CPS image denoising algorithm, aiming to boost the SGM algorithm's accuracy and efficiency in remote sensing image matching. The stereo image pair's quality is evaluated using the PSNR index, and a decision-making criterion based on the CPS algorithm is incorporated to determine the need for denoising. Preprocessing steps, including image cropping and pixel coordinate transformation, significantly reduce computational requirements. An epipolar line model, minimizing the disparity between two pixels, is used for calculations. This model is employed to construct an epipolar image, enhancing the accuracy and efficiency of the process. The study conducted experimental validation and analysis of the mismatch rate, running time, and denoising effect of the algorithm using the Middlebury 2021 stereo datasets. Additionally, the matching results of the World-View3 satellite stereo image pairs were visualized and analyzed. The experimental results indicate that the proposed algorithm reduces the average mismatch rate by 13.1% and increases the running speed by about 3 to 4 times compared to the SGBM algorithm. Specifically, the denoising effect reduces the mismatch rate of the reconstructed image by an average of 8.97%. The results indicate that the CPS method effectively addresses dense matching challenges in the presence of image blur and noise, thereby improving the operational efficiency and accuracy of the dense matching algorithm.

摘要

遥感图像的密集匹配对于三维重建至关重要。本研究提出了一种采用CPS图像去噪算法的增强型密集匹配方法,旨在提高SGM算法在遥感图像匹配中的准确性和效率。使用PSNR指标评估立体图像对的质量,并纳入基于CPS算法的决策标准来确定是否需要去噪。包括图像裁剪和像素坐标变换在内的预处理步骤显著降低了计算需求。使用极线模型(使两个像素之间的视差最小化)进行计算。该模型用于构建极线图像,提高了该过程的准确性和效率。本研究使用Middlebury 2021立体数据集对算法的误匹配率、运行时间和去噪效果进行了实验验证和分析。此外,还对World-View3卫星立体图像对的匹配结果进行了可视化和分析。实验结果表明,与SGBM算法相比,该算法的平均误匹配率降低了13.1%,运行速度提高了约3至4倍。具体而言,去噪效果使重建图像的误匹配率平均降低了8.97%。结果表明,CPS方法有效地解决了存在图像模糊和噪声时的密集匹配挑战,从而提高了密集匹配算法的运行效率和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/521b/11039479/afb28ad8446e/41598_2024_59980_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验