Lokkerbol Joran, Geomini Amber, van Voorthuijsen Jule, van Straten Annemieke, Tiemens Bea, Smit Filip, Risseeuw Anneriek, Hiligsmann Mickaël
a Centre of Economic Evaluation, Trimbos Institute (Netherlands Institute of Mental Health) , Utrecht , The Netherlands.
b Rob Giel Research Center, University Medical Center Groningen , Groningen , The Netherlands.
J Med Econ. 2019 Feb;22(2):178-186. doi: 10.1080/13696998.2018.1555404. Epub 2018 Dec 22.
There is an increasing interest in understanding patients' preferences in the area of healthcare decision-making to better match treatment with patients' preferences and improve treatment uptake and adherence. The aim of this study was to elicit the preferences of patients with a depressive disorder regarding treatment modalities.
In a discrete-choice experiment, patients chose repetitively between two hypothetical depression treatments that varied in four treatment attributes: waiting time until the start of treatment, treatment intensity, level of digitalization, and group size. A Bayesian-efficient design was used to develop 12 choice sets, and patients' preferences and preference variation was estimated using a random parameters logit model.
A total of 165 patients with depression completed the survey. Patients preferred short (over long) waiting times, face-to-face (over digital) treatment, individual (over group) treatment, and one session per week over two sessions per week or one session per 2 weeks. Patients disfavoured digital treatment and treatment in a large group. Waiting time and treatment intensity were substantially less important attributes to patients than face-to-face (vs digital) and group size. Significant variation in preferences was observed for each attribute, and sub-group analyses revealed that these differences were in part related to education.
The convenience sample over-represented the female and younger population, limiting generalizability. Limited information on background characteristics limited the possibilities to explore preference heterogeneity.
This study demonstrated how different treatment components for depression affect patients' preferences for those treatments. There is significant variation in treatment preferences, even after accounting for education. Incorporating individual patients' preferences into treatment decisions could potentially lead to improved adherence of treatments for depressive disorders.
在医疗保健决策领域,人们越来越关注了解患者的偏好,以便使治疗更好地符合患者的偏好,提高治疗的接受度和依从性。本研究的目的是了解抑郁症患者对治疗方式的偏好。
在一项离散选择实验中,患者在两种假设的抑郁症治疗方案之间反复进行选择,这两种方案在四个治疗属性上有所不同:治疗开始前的等待时间、治疗强度、数字化程度和小组规模。采用贝叶斯有效设计来制定12个选择集,并使用随机参数logit模型估计患者的偏好和偏好差异。
共有165名抑郁症患者完成了调查。患者更喜欢短(而非长)等待时间、面对面(而非数字化)治疗、个体(而非小组)治疗,以及每周一次治疗而非每周两次或每两周一次治疗。患者不喜欢数字化治疗和大组治疗。与面对面(与数字化相比)和小组规模相比,等待时间和治疗强度对患者来说重要性要低得多。每个属性都观察到了显著的偏好差异,亚组分析表明这些差异部分与教育程度有关。
便利样本中女性和年轻人群体占比过高,限制了普遍性。背景特征信息有限,限制了探索偏好异质性的可能性。
本研究展示了抑郁症的不同治疗组成部分如何影响患者对这些治疗的偏好。即使考虑了教育程度,治疗偏好仍存在显著差异。将个体患者的偏好纳入治疗决策可能会提高抑郁症治疗的依从性。