Suppr超能文献

评价一种双信号子空间投影算法在伴有迷走神经刺激器的难治性癫痫患者脑磁图记录中的应用。

Evaluation of a dual signal subspace projection algorithm in magnetoencephalographic recordings from patients with intractable epilepsy and vagus nerve stimulators.

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0628, USA.

Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143-0628, USA; Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bangalore, India; MEG Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India.

出版信息

Neuroimage. 2019 Mar;188:161-170. doi: 10.1016/j.neuroimage.2018.11.025. Epub 2018 Nov 29.

Abstract

Magnetoencephalography (MEG) data is subject to many sources of environmental noise, and interference rejection is a necessary step in the processing of MEG data. Large amplitude interference caused by sources near the brain have been common in clinical settings and are difficult to reject. Artifact from vagal nerve stimulators (VNS) is a prototypical example. In this study, we describe a novel MEG interference rejection algorithm called dual signal subspace projection (DSSP), and evaluate its performance in clinical MEG data from people with epilepsy and implanted VNS. The performance of DSSP was evaluated in a retrospective cohort study of patients with epilepsy and VNS who had MEG scans for source localization of interictal epileptiform discharges. DSSP was applied to the MEG data and compared with benchmark for performance. We evaluated the clinical impact of interference rejection based on human expert detection and estimation of the location and time-course of interictal spikes, using an empirical Bayesian source reconstruction algorithm (Champagne). Clinical recordings, after DSSP processing, became more readable and a greater number of interictal epileptic spikes could be clearly identified. Source localization results of interictal spikes also significantly improved from those achieved before DSSP processing, including meaningful estimates of activity time courses. Therefore, DSSP is a valuable novel interference rejection algorithm that can be successfully deployed for the removal of strong artifacts and interferences in MEG.

摘要

脑磁图(MEG)数据受到许多环境噪声源的影响,因此干扰抑制是 MEG 数据处理的必要步骤。在临床环境中,大脑附近源引起的大振幅干扰很常见,且难以消除。迷走神经刺激器(VNS)引起的伪影就是一个典型的例子。在这项研究中,我们描述了一种称为双信号子空间投影(DSSP)的新型 MEG 干扰抑制算法,并评估了其在癫痫患者和植入 VNS 的临床 MEG 数据中的性能。我们在癫痫伴 VNS 患者的回顾性队列研究中评估了 DSSP 的性能,这些患者进行了 MEG 扫描以进行发作间期癫痫样放电的源定位。将 DSSP 应用于 MEG 数据,并与基准进行性能比较。我们使用经验贝叶斯源重建算法(Champagne),根据人类专家对发作间期棘波的位置和时程的检测和估计,评估干扰抑制的临床影响。经过 DSSP 处理后,临床记录变得更易于阅读,并且可以更清晰地识别出更多的发作间期癫痫棘波。发作间期棘波的源定位结果也显著改善,包括对活动时间过程的有意义估计。因此,DSSP 是一种有价值的新型干扰抑制算法,可以成功地用于去除 MEG 中的强伪影和干扰。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验