Suppr超能文献

比较 DSSP 和 tSSS 算法在去除脑磁图中迷走神经刺激器伪影中的效果。

Comparison of DSSP and tSSS algorithms for removing artifacts from vagus nerve stimulators in magnetoencephalography data.

机构信息

Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, 513 Parnassus Avenue, S362, San Francisco, CA 94143, United States of America.

出版信息

J Neural Eng. 2019 Nov 12;16(6):066045. doi: 10.1088/1741-2552/ab4065.

Abstract

OBJECTIVE

Large-amplitude artifacts from vagus nerve stimulator (VNS) implants for refractory epilepsy affect magnetoencephalography (MEG) recordings and are difficult to reject, resulting in unusable data from this important population of patients who are frequently evaluated for surgical treatment of epilepsy. Here we compare the performance of two artifact removal algorithms for MEG data: dual signal subspace projection (DSSP) and temporally extended signal space separation (tSSS).

APPROACH

Each algorithm's performance was first evaluated in simulations. We then tested the performance of each algorithm on resting-state MEG data from patients with VNS implants. We also examined how each algorithm improved source localization of somatosensory evoked fields in patients with VNS implants.

MAIN RESULTS

DSSP and tSSS algorithms have a similar ability to reject interference in both simulated and real MEG data if the origin location for tSSS is appropriately set. If the origin set for tSSS is inappropriate, the signal after tSSS can be distorted due to a mismatch between the internal region and the actual source space. Both DSSP and tSSS are able to remove large-amplitude artifacts from outside the brain. DSSP might be a better choice than tSSS when the choice of origin location for tSSS is difficult.

SIGNIFICANCE

Both DSSP and tSSS algorithms can recover distorted MEG recordings from people with intractable epilepsy and VNS implants, improving epileptic spike identification and source localization of both functional activity and epileptiform activity.

摘要

目的

源于难治性癫痫患者迷走神经刺激器(VNS)植入的大幅伪迹会影响脑磁图(MEG)记录,且难以去除,导致这一重要患者群体的数据无法使用,而这些患者通常会接受癫痫手术治疗的评估。在此,我们比较了两种用于 MEG 数据的去伪迹算法的性能:双信号子空间投影(DSSP)和时间扩展信号空间分离(tSSS)。

方法

首先在模拟中评估了每种算法的性能。然后,我们测试了每种算法在有 VNS 植入的患者静息态 MEG 数据上的性能。我们还研究了每种算法如何改善有 VNS 植入的患者体感诱发电位的源定位。

主要结果

如果 tSSS 的原点位置设置得当,DSSP 和 tSSS 算法在模拟和真实 MEG 数据中都具有相似的干扰拒绝能力。如果 tSSS 的原点集设置不当,由于内部区域与实际源空间之间的不匹配,tSSS 之后的信号可能会失真。DSSP 和 tSSS 都能够去除大脑外部的大幅度伪迹。当 tSSS 的原点位置选择困难时,DSSP 可能是比 tSSS 更好的选择。

意义

DSSP 和 tSSS 算法都可以从患有难治性癫痫和 VNS 植入的患者中恢复失真的 MEG 记录,从而改善癫痫棘波的识别和功能活动以及癫痫样活动的源定位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验