Lioy Virginia S, Boccard Frédéric
Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.
Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette cedex, France.
Methods Enzymol. 2018;612:25-45. doi: 10.1016/bs.mie.2018.07.007. Epub 2018 Aug 23.
The development of next-generation sequencing technologies has allowed the application of different methods dedicated to the study of DNA-protein interactions and chromosome conformation to entire bacterial genome. By combining these approaches, the role of various parameters and factors involved in gene expression and chromosome organization can be disclosed at the molecular level over the full genome. Here we describe two methods that profoundly revolutionized our vision of DNA-protein interactions and spatial organization of chromosomes. Chromosome conformation capture (3C) coupled to deep sequencing (3C-seq) enables studies of the genome-wide chromosome folding and its control by different parameters and structural factors. Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) revealed the extent and regulation of DNA-protein interactions in vivo and highlight the role of structural factors in the control of chromosome organization. In this chapter, we describe a detailed protocol of 3C-seq and ChIP-seq experiments that, when combined, allows the spatial study of the chromosome and the factors that promote specific folding. Data processing and analysis for both experiments are also discussed.
新一代测序技术的发展使得致力于研究DNA-蛋白质相互作用和染色体构象的不同方法能够应用于整个细菌基因组。通过结合这些方法,可以在全基因组的分子水平上揭示参与基因表达和染色体组织的各种参数和因素的作用。在这里,我们描述了两种深刻改变我们对DNA-蛋白质相互作用和染色体空间组织看法的方法。染色体构象捕获(3C)与深度测序(3C-seq)相结合,能够研究全基因组范围内的染色体折叠及其受不同参数和结构因素的控制。染色质免疫沉淀(ChIP)后进行高通量DNA测序(ChIP-seq),揭示了体内DNA-蛋白质相互作用的程度和调控,并突出了结构因素在染色体组织控制中的作用。在本章中,我们描述了3C-seq和ChIP-seq实验的详细方案,将这两种方法结合起来,可以对染色体及其促进特定折叠的因素进行空间研究。同时还讨论了这两个实验的数据处理和分析。