Suppr超能文献

协同非键作用力控制 pH 低插入肽 pHLIP 的膜结合。

Cooperative Nonbonded Forces Control Membrane Binding of the pH-Low Insertion Peptide pHLIP.

机构信息

C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia.

C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia.

出版信息

Biophys J. 2018 Dec 18;115(12):2403-2412. doi: 10.1016/j.bpj.2018.11.002. Epub 2018 Nov 7.

Abstract

Peptides with the ability to bind and insert into the cell membrane have immense potential in biomedical applications. pH (low) insertion peptide (pHLIP), a water-soluble polypeptide derived from helix C of bacteriorhodopsin, can insert into a membrane at acidic pH to form a stable transmembrane α-helix. The insertion process takes place in three stages: pHLIP is unstructured and soluble in water at neutral pH (state I), unstructured and bound to the surface of a membrane at neutral pH (state II), and inserted into the membrane as an α-helix at low pH (state III). Using molecular dynamics simulations, we have modeled state II of pHLIP and a fast-folding variant of pHLIP, in which each peptide is bound to a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer surface. Our results provide strong support for recently published spectroscopic studies, namely that pHLIP preferentially binds to the bilayer surface as a function of location of anionic amino acids and that backbone dehydration occurs upon binding. Unexpectedly, we also observed several instances of segments of pHLIP folding into a stable helical turn. Our results provide a molecular level of detail that is essential to providing new insights into pHLIP function and to facilitate design of variants with improved membrane-active capabilities.

摘要

具有结合并插入细胞膜能力的肽在生物医学应用中具有巨大的潜力。pH(低)插入肽(pHLIP)是一种源自菌紫质螺旋 C 的水溶性多肽,可在酸性 pH 下插入膜中形成稳定的跨膜α-螺旋。插入过程分三个阶段进行:pHLIP 在中性 pH 时无结构且可溶于水(状态 I)、无结构且与中性 pH 时的膜表面结合(状态 II)、在酸性 pH 下插入膜中成为 α-螺旋(状态 III)。我们使用分子动力学模拟对 pHLIP 的状态 II 和快速折叠变体 pHLIP 进行了建模,其中每个肽都与 1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱双层表面结合。我们的结果为最近发表的光谱研究提供了有力支持,即 pHLIP 优先作为阴离子氨基酸位置的函数结合到双层表面,并且结合时会发生骨架去水。出乎意料的是,我们还观察到 pHLIP 的几个片段折叠成稳定的螺旋。我们的结果提供了分子水平的细节,对于深入了解 pHLIP 的功能以及设计具有改进的膜活性能力的变体至关重要。

相似文献

5
Ions Modulate Key Interactions between pHLIP and Lipid Membranes.离子调节 pHLIP 与脂膜之间的关键相互作用。
Biophys J. 2019 Sep 3;117(5):920-929. doi: 10.1016/j.bpj.2019.07.034. Epub 2019 Jul 29.
8
Comparison of lipid-dependent bilayer insertion of pHLIP and its P20G variant.pHLIP 及其 P20G 变体的脂质依赖性双层插入的比较。
Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):534-543. doi: 10.1016/j.bbamem.2017.11.006. Epub 2017 Nov 11.
10
Membrane-Induced p K Shifts in wt-pHLIP and Its L16H Variant.膜诱导 wt-pHLIP 及其 L16H 变体的 pK 位移。
J Chem Theory Comput. 2018 Jun 12;14(6):3289-3297. doi: 10.1021/acs.jctc.8b00102. Epub 2018 May 17.

引用本文的文献

3
Arginine Residues Modulate the Membrane Interactions of pHLIP Peptides.精氨酸残基调节 pHLIP 肽的膜相互作用。
J Chem Inf Model. 2023 Jul 24;63(14):4433-4446. doi: 10.1021/acs.jcim.3c00360. Epub 2023 Jul 3.
4
pHLIP Peptides Target Acidity in Activated Macrophages.pHLIP 肽靶向激活的巨噬细胞中的酸度。
Mol Imaging Biol. 2022 Dec;24(6):874-885. doi: 10.1007/s11307-022-01737-x. Epub 2022 May 23.
7
Advances in Research on Bladder Cancer Targeting Peptides: a Review.膀胱癌靶向肽研究进展:综述
Cell Biochem Biophys. 2021 Dec;79(4):711-718. doi: 10.1007/s12013-021-01019-3. Epub 2021 Sep 1.

本文引用的文献

1
Membrane-Induced p K Shifts in wt-pHLIP and Its L16H Variant.膜诱导 wt-pHLIP 及其 L16H 变体的 pK 位移。
J Chem Theory Comput. 2018 Jun 12;14(6):3289-3297. doi: 10.1021/acs.jctc.8b00102. Epub 2018 May 17.
4
Comparison of lipid-dependent bilayer insertion of pHLIP and its P20G variant.pHLIP 及其 P20G 变体的脂质依赖性双层插入的比较。
Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):534-543. doi: 10.1016/j.bbamem.2017.11.006. Epub 2017 Nov 11.
7
Protonation-Driven Membrane Insertion of a pH-Low Insertion Peptide.质子化驱动的 pH 低插入肽的膜插入。
Angew Chem Int Ed Engl. 2016 Sep 26;55(40):12376-81. doi: 10.1002/anie.201605203. Epub 2016 Aug 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验