Suppr超能文献

模式分类使用多体素模式分析来区分跨期选择的决策。

Pattern classification differentiates decision of intertemporal choices using multi-voxel pattern analysis.

机构信息

Faculty of Psychology, Southwest University, Chongqing, China.

Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, China.

出版信息

Cortex. 2019 Feb;111:183-195. doi: 10.1016/j.cortex.2018.11.001. Epub 2018 Nov 10.

Abstract

In daily life, individuals frequently make trade-offs between the small-but-immediate benefits and large-but-delayed profits. This type of decision is known as intertemporal choice. Previous studies have uncovered the neurobiological mechanism of the intertemporal choice, but it still remains unclear how the patterns of brain activity predict the decisions of intertemporal choices. To fill this gap, we used functional magnetic resonance imaging (fMRI), in conjunction with the machine learning technique of multi-voxel pattern analysis (MVPA), to ascertain the predictive capability of the neuronal pattern for classifying individuals' intertemporal decisions across two independent samples. To further probe how this neuronal pattern worked in predicting individual intertemporal decision, we drew on the Power Atlas to examine the accuracies of classification within each regional mask as well. Classification findings showed that the pattern of neuronal activity over the whole-brain can correctly classify the accuracies of individual decisions up to 84.3%. Encouragingly, further analysis shows that the neuronal information encoded in three brain functional networks can predict individuals' decisions with significant discriminative power in cross-samples, namely the valuation network (e.g., striatum), the cognitive control network (e.g., dorsolateral prefrontal cortex) and the episodic prospection network (e.g., amygdala, parahippocampus gyrus, insula). Collectively, these findings advance our comprehension of the neuronal mechanism of human intertemporal decisions, and substantially reshape our understanding for this cardinal behaviour from behavioural-brain scheme to brain-behavioural configuration.

摘要

在日常生活中,个体经常在小而即时的收益和大而延迟的收益之间做出权衡。这种决策被称为跨期选择。先前的研究已经揭示了跨期选择的神经生物学机制,但仍不清楚大脑活动模式如何预测跨期选择的决策。为了填补这一空白,我们使用功能磁共振成像(fMRI)结合多体素模式分析(MVPA)的机器学习技术,确定神经元模式在两个独立样本中分类个体跨期决策的预测能力。为了进一步探究这种神经元模式在预测个体跨期决策中的作用,我们还利用 Power Atlas 来检查每个区域掩模内分类的准确性。分类结果表明,整个大脑的神经元活动模式可以正确分类个体决策的准确性,最高可达 84.3%。令人鼓舞的是,进一步的分析表明,三个大脑功能网络中编码的神经元信息可以在跨样本中以显著的判别力预测个体的决策,即估值网络(例如,纹状体)、认知控制网络(例如,背外侧前额叶皮层)和情景展望网络(例如,杏仁核、海马旁回、脑岛)。总的来说,这些发现增进了我们对人类跨期决策的神经元机制的理解,并从行为-大脑方案到大脑-行为配置,大大改变了我们对这种主要行为的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验