Department of Microbiology, Faculty of Science, University of Maiduguri, P.M.B. 1069, Nigeria; Department of Biotechnology, School of Engineering Technology, Sharda University, Greater Noida, India.
Comput Biol Chem. 2019 Feb;78:116-126. doi: 10.1016/j.compbiolchem.2018.11.002. Epub 2018 Nov 10.
The present study aimed to identify the prospective inhibitors of MurD, a cytoplasmic enzyme that catalyzes the addition of d-glutamate to the UDP-N-acetylmuramoyl-l-alanine nucleotide precursor in Mycobacterium tuberculosis (MTB), using virtual screening, docking studies, pharmacokinetic analysis, Molecular Dynamic (MD) simulation, and Molecular Mechanics Generalized Born and Surface Area (MM-GBSA) analyses. The three dimensional (3D) structure was determined based on the homology technique using a template from Streptococcus agalactiae. The modeled structure had three binding sites, namely; substrate binding site (Val18, Thr19, Asp39, Asp40, Gly75, Asn147, Gln171 and His192), the ATP binding site (Gly123, Lys124, Thr125, Thr126, Glu166, Asp283, and Arg314) and the glutamic acid binding site (Arg382, Ser463, and Tyr470). These residues mentioned above play a critical role in the catalytic activity of the enzyme, and their inhibition could serve as a stumbling block to the normal function of the enzyme. A total of 10,344 obtained from virtual screened of Zinc and PubChem databases. These compounds further screened for Lipinski rule of five, docking studies and pharmacokinetic analysis. Four compounds with good binding energies (ZINC11881196 = -10.33 kcal/mol, ZINC12247644 = -8.90 kcal/mol, ZINC14995379 =-8.42 kcal/mol, and PubChem6185 = -8.20 kcal/mol), better than the binding energies of the ATP (-2.31 kcal/mol) and the ligand with known IC, Aminothiazole (-7.11 kcal/mol) were selected for the MD simulation and MM-GBSA analyses. The result of the analyses showed that all the four ligands formed a stable complex and had the binding free energies better than the binding energy of ATP. Therefore, these ligands considered as suitable prospective inhibitors of the MurD after experimental validation.
本研究旨在通过虚拟筛选、对接研究、药代动力学分析、分子动力学(MD)模拟和分子力学广义 Born 和表面积(MM-GBSA)分析,鉴定 MurD 的潜在抑制剂。MurD 是一种细胞质酶,催化分枝杆菌(MTB)中 UDP-N-乙酰胞壁酰-L-丙氨酸核苷酸前体与 D-谷氨酸的加合。使用来自酿脓链球菌的模板,基于同源技术确定了三维(3D)结构。该模型结构有三个结合位点,即:底物结合位点(Val18、Thr19、Asp39、Asp40、Gly75、Asn147、Gln171 和 His192)、ATP 结合位点(Gly123、Lys124、Thr125、Thr126、Glu166、Asp283 和 Arg314)和谷氨酸结合位点(Arg382、Ser463 和 Tyr470)。上述残基在酶的催化活性中起着关键作用,其抑制作用可能成为酶正常功能的障碍。从虚拟筛选的锌和 PubChem 数据库中获得了总共 10344 个化合物。这些化合物进一步进行了 Lipinski 五规则筛选、对接研究和药代动力学分析。选择了四个具有良好结合能的化合物(ZINC11881196 =-10.33 kcal/mol、ZINC12247644 =-8.90 kcal/mol、ZINC14995379 =-8.42 kcal/mol 和 PubChem6185 =-8.20 kcal/mol),其结合能优于 ATP(-2.31 kcal/mol)和具有已知 IC 的配体氨噻唑(-7.11 kcal/mol),用于 MD 模拟和 MM-GBSA 分析。分析结果表明,所有四个配体都形成了稳定的复合物,并且结合自由能都优于 ATP 的结合能。因此,这些配体在经过实验验证后被认为是 MurD 的潜在抑制剂。
SAR QSAR Environ Res. 2018-11-8
J Chem Inf Model. 2014-4-28
Pharmaceuticals (Basel). 2023-3-1
Curr Res Pharmacol Drug Discov. 2022-11-3
Antibiotics (Basel). 2021-12-15