Suppr超能文献

增强现实头显能否提高模拟全髋关节置换术中髋臼杯方位准确性?一项随机试验

Can an Augmented Reality Headset Improve Accuracy of Acetabular Cup Orientation in Simulated THA? A Randomized Trial.

机构信息

K. Logishetty, L. Western, R. Morgan, F. Iranpour, J. P. Cobb, E. Auvinet, MSk Lab, Imperial College London, London, UK.

出版信息

Clin Orthop Relat Res. 2019 May;477(5):1190-1199. doi: 10.1097/CORR.0000000000000542.

Abstract

BACKGROUND

Accurate implant orientation reduces wear and increases stability in arthroplasty but is a technically demanding skill. Augmented reality (AR) headsets overlay digital information on top of the real world. We have developed an enhanced AR headset capable of tracking bony anatomy in relation to an implant, but it has not yet been assessed for its suitability as a training tool for implant orientation.

QUESTIONS/PURPOSES: (1) In the setting of simulated THA performed by novices, does an AR headset improve the accuracy of acetabular component positioning compared with hands-on training by an expert surgeon? (2) What are trainees' perceptions of the AR headset in terms of realism of the task, acceptability of the technology, and its potential role for surgical training?

METHODS

Twenty-four study participants (medical students in their final year of school, who were applying to surgery residency programs, and who had no prior arthroplasty experience) participated in a randomized simulation trial using an AR headset and a simulated THA. Participants were randomized to two groups completing four once-weekly sessions of baseline assessment, training, and reassessment. One group trained using AR (with live holographic orientation feedback) and the other received one-on-one training from a hip arthroplasty surgeon. Demographics and baseline performance in orienting an acetabular implant to six patient-specific values on the phantom pelvis were collected before training and were comparable. The orientation error in degrees between the planned and achieved orientations was measured and was not different between groups with the numbers available (surgeon group mean error ± SD 16° ± 7° versus AR 14° ± 7°; p = 0.22). Participants trained by AR also completed a validated posttraining questionnaire evaluating their experiences.

RESULTS

During the four training sessions, participants using AR-guidance had smaller mean (± SD) errors in orientation than those receiving guidance from the surgeon: 1° ± 1° versus AR 6° ± 4°, p < 0.001. In the fourth session's assessment, participants in both groups had improved (surgeon group mean improvement 6°, 95% CI, 4-8°; p < 0.001 versus AR group 9°, 95% CI 7-10°; p < 0.001). There was no difference between participants in the surgeon-trained and AR-trained group: mean difference 1.2°, 95% CI, -1.8 to 4.2°; p = 0.281. In posttraining evaluation, 11 of 12 participants would use the AR platform as a training tool for developing visuospatial skills and 10 of 12 for procedure-specific rehearsals. Most participants (11 of 12) stated that a combination of an expert trainer for learning and AR for unsupervised training would be preferred.

CONCLUSIONS

A novel head-mounted AR platform tracked an implant in relation to bony anatomy to a clinically relevant level of accuracy during simulated THA. Learners were equally accurate, whether trained by AR or a surgeon. The platform enabled the use of real instruments and gave live feedback; AR was thus considered a feasible and valuable training tool as an adjunct to expert guidance in the operating room. Although there were no differences in accuracy between the groups trained using AR and those trained by an expert surgeon, we believe the tool may be useful in education because it demonstrates that some motor skills for arthroplasty may be learned in an unsupervised setting. Future studies will evaluate AR-training for arthroplasty skills other than cup orientation and its transfer validity to real surgery.

LEVEL OF EVIDENCE

Level I, therapeutic study.

摘要

背景

准确的植入物方向可以减少磨损并增加关节置换的稳定性,但这是一项技术要求很高的技能。增强现实(AR)耳机将数字信息叠加在真实世界之上。我们已经开发出一种增强型 AR 耳机,能够跟踪与植入物相关的骨解剖结构,但尚未评估其作为植入物方向培训工具的适用性。

问题/目的:(1)在由新手模拟进行的 THA 中,与专家外科医生的实际培训相比,AR 耳机是否可以提高髋臼组件定位的准确性?(2)受训者对 AR 耳机在任务现实性、技术可接受性及其在手术培训中的潜在作用方面的看法如何?

方法

24 名研究参与者(最后一年的医学生,他们正在申请外科住院医师计划,并且没有关节置换经验)参加了一项使用 AR 耳机和模拟 THA 的随机模拟试验。参与者被随机分为两组,每组进行四次每周一次的基线评估、培训和重新评估。一组使用 AR(具有实时全息定向反馈)进行培训,另一组接受髋关节置换外科医生的一对一培训。在培训之前收集了定向髋臼植入物到幻影骨盆上六个患者特定值的能力的人口统计学和基线表现,并且两组的表现相当。测量计划和实现方向之间的定向误差(以度为单位),并且可用的数字(外科医生组平均误差±7°与 AR 14°±7°;p=0.22)之间没有差异。接受 AR 培训的参与者还完成了一项经过验证的培训后问卷调查,评估他们的体验。

结果

在四次培训课程中,使用 AR 指导的参与者的定向误差平均值(±SD)小于接受外科医生指导的参与者:1°±1°与 AR 6°±4°,p<0.001。在第四次评估中,两组参与者的定向能力都有所提高(外科医生组平均改善 6°,95%CI,4-8°;p<0.001,AR 组 9°,95%CI,7-10°;p<0.001)。外科医生培训组和 AR 培训组之间的参与者没有差异:平均差异 1.2°,95%CI,-1.8 至 4.2°;p=0.281。在培训后评估中,12 名参与者中有 11 名将使用 AR 平台作为发展空间技能的培训工具,10 名参与者将使用 AR 平台进行特定于程序的排练。大多数参与者(12 名中的 11 名)表示,将专家培训师用于学习和 AR 用于无人监督的培训相结合将是首选。

结论

一种新型的头戴式 AR 平台在模拟 THA 期间以临床相关的准确性跟踪植入物与骨解剖结构的关系。学习者无论接受 AR 还是外科医生的培训,准确性都相同。该平台允许使用真实仪器并提供实时反馈;因此,AR 被认为是一种可行且有价值的培训工具,可作为手术室中专家指导的辅助工具。尽管接受 AR 培训和接受专家外科医生培训的组之间在准确性方面没有差异,但我们认为该工具可能在教育中有用,因为它表明一些关节置换的运动技能可以在无人监督的环境中学习。未来的研究将评估 AR 培训在髋臼定向以外的关节置换技能方面的应用及其对真实手术的转移有效性。

证据水平

I 级,治疗性研究。

相似文献

1
Can an Augmented Reality Headset Improve Accuracy of Acetabular Cup Orientation in Simulated THA? A Randomized Trial.
Clin Orthop Relat Res. 2019 May;477(5):1190-1199. doi: 10.1097/CORR.0000000000000542.
2
No Benefit After THA Performed With Computer-assisted Cup Placement: 10-year Results of a Randomized Controlled Study.
Clin Orthop Relat Res. 2016 Oct;474(10):2085-93. doi: 10.1007/s11999-016-4863-7.
5
The Safe Zone Range for Cup Anteversion Is Narrower Than for Inclination in THA.
Clin Orthop Relat Res. 2018 Feb;476(2):325-335. doi: 10.1007/s11999.0000000000000051.
6
Virtual reality training improves trainee performance in total hip arthroplasty: a randomized controlled trial.
Bone Joint J. 2019 Dec;101-B(12):1585-1592. doi: 10.1302/0301-620X.101B12.BJJ-2019-0643.R1.
8
Augmented Reality in Orthopedic Practice and Education.
Orthop Clin North Am. 2021 Jan;52(1):15-26. doi: 10.1016/j.ocl.2020.08.002.
9
A Pilot Study of Augmented Reality Technology Applied to the Acetabular Cup Placement During Total Hip Arthroplasty.
J Arthroplasty. 2018 Jun;33(6):1833-1837. doi: 10.1016/j.arth.2018.01.067. Epub 2018 Feb 5.
10
Novel Acetabular Cup for Revision THA Improves Hip Center of Rotation: A Radiographic Evaluation.
Clin Orthop Relat Res. 2018 Feb;476(2):315-322. doi: 10.1007/s11999.0000000000000034.

引用本文的文献

2
Navigating the future: A comprehensive review of technology in shoulder arthroplasty.
J Hand Microsurg. 2025 Feb 4;17(3):100224. doi: 10.1016/j.jham.2025.100224. eCollection 2025 May.
4
Artificial Intelligence in Breast Reconstruction: A Narrative Review.
Medicina (Kaunas). 2025 Feb 28;61(3):440. doi: 10.3390/medicina61030440.
7
Does Preoperative Virtual Reality Experience Enhance Implant Positioning Accuracy in Total Hip Arthroplasty?
Cureus. 2024 Sep 28;16(9):e70390. doi: 10.7759/cureus.70390. eCollection 2024 Sep.
8
Extended Reality-Based Head-Mounted Displays for Surgical Education: A Ten-Year Systematic Review.
Bioengineering (Basel). 2024 Jul 23;11(8):741. doi: 10.3390/bioengineering11080741.
9
Metaverse, virtual reality and augmented reality in total shoulder arthroplasty: a systematic review.
BMC Musculoskelet Disord. 2024 May 21;25(1):396. doi: 10.1186/s12891-024-07436-8.
10
Feasibility and Usability of Augmented Reality Technology in the Orthopaedic Operating Room.
Curr Rev Musculoskelet Med. 2024 May;17(5):117-128. doi: 10.1007/s12178-024-09888-w. Epub 2024 Apr 12.

本文引用的文献

1
An advanced simulator for orthopedic surgical training.
Int J Comput Assist Radiol Surg. 2018 Feb;13(2):305-319. doi: 10.1007/s11548-017-1688-0. Epub 2017 Dec 8.
2
Development of a physical shoulder simulator for the training of basic arthroscopic skills.
Int J Med Robot. 2018 Feb;14(1). doi: 10.1002/rcs.1868. Epub 2017 Oct 23.
3
Cigar Box Arthroscopy: A Randomized Controlled Trial Validates Nonanatomic Simulation Training of Novice Arthroscopy Skills.
Arthroscopy. 2017 Nov;33(11):2015-2023.e3. doi: 10.1016/j.arthro.2017.04.022. Epub 2017 Jul 1.
4
Observational Learning During Simulation-Based Training in Arthroscopy: Is It Useful to Novices?
J Surg Educ. 2018 Jan-Feb;75(1):222-230. doi: 10.1016/j.jsurg.2017.06.005. Epub 2017 Jun 23.
5
What are the risk factors for dislocation in primary total hip arthroplasty? A multicenter case-control study of 128 unstable and 438 stable hips.
Orthop Traumatol Surg Res. 2017 Sep;103(5):663-668. doi: 10.1016/j.otsr.2017.05.014. Epub 2017 Jun 16.
7
The Grapefruit: An Alternative Arthroscopic Tool Skill Platform.
Arthroscopy. 2017 Aug;33(8):1567-1572. doi: 10.1016/j.arthro.2017.03.010. Epub 2017 May 11.
8
Development and evaluation of a trauma decision-making simulator in Oculus virtual reality.
Am J Surg. 2018 Jan;215(1):42-47. doi: 10.1016/j.amjsurg.2017.02.011. Epub 2017 Feb 10.
9
Simulation-Based Training Platforms for Arthroscopy: A Randomized Comparison of Virtual Reality Learning to Benchtop Learning.
Arthroscopy. 2017 May;33(5):996-1003. doi: 10.1016/j.arthro.2016.10.021. Epub 2017 Jan 7.
10
Prosthetic Dislocation and Revision After Primary Total Hip Arthroplasty in Lumbar Fusion Patients: A Propensity Score Matched-Pair Analysis.
J Arthroplasty. 2017 May;32(5):1635-1640.e1. doi: 10.1016/j.arth.2016.11.029. Epub 2016 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验