Chouinard Brea, Scott Kimberly, Cusack Rhodri
Trinity College Dublin, Dublin, Ireland.
Massachusetts Institute of Technology, Cambridge, MA, USA.
Infant Behav Dev. 2019 Feb;54:1-12. doi: 10.1016/j.infbeh.2018.11.004. Epub 2018 Nov 30.
Online testing of infants by recording video with a webcam has the potential to improve the replicability of developmental studies by facilitating larger sample sizes and by allowing methods (including recruitment) to be specified in code. However, the recorded video still needs to be manually scored. This labour-intensive process puts downward pressure on sample sizes and requires subjective judgements that may not be reproducible in a different laboratory. Here we present the first fully automatic pipeline, using a face analysis software-as-a-service and a discriminant-analysis classifier to score infant videos acquired online. We compare human and machine performance for looking time and preferential looking paradigms; machine performance demonstrates a promising proof of principle for looking time and is above chance in classifying preferential looking. Additionally, we studied the characteristics of the video and the child that influenced automated scoring, so that future studies can acquire data that maximises the performance of automatic gaze coding and/or focus on improving automatic coding for particularly challenging data. We believe this technology has great promise for developmental science.
通过网络摄像头录制视频对婴儿进行在线测试,有潜力通过扩大样本量以及允许用代码指定方法(包括招募)来提高发育研究的可重复性。然而,录制的视频仍需人工评分。这个劳动密集型过程给样本量带来了下行压力,并且需要主观判断,而这些判断在不同实验室可能无法重现。在此,我们展示了首个全自动流程,使用一款面部分析软件即服务和一个判别分析分类器对在线获取的婴儿视频进行评分。我们比较了人类和机器在注视时间和偏好注视范式方面的表现;机器在注视时间方面的表现展示了一个有前景的原理验证,并且在对偏好注视进行分类时高于随机水平。此外,我们研究了影响自动评分的视频和儿童特征,以便未来的研究能够获取能使自动注视编码性能最大化的数据,和/或专注于改进对特别具有挑战性的数据的自动编码。我们相信这项技术对发育科学有很大的前景。