Suppr超能文献

抗生素甲氧苄啶与 2-氨基嘌呤具有强烈的诱变协同作用。

The Antibiotic Trimethoprim Displays Strong Mutagenic Synergy with 2-Aminopurine.

机构信息

Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA.

Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA.

出版信息

Antimicrob Agents Chemother. 2019 Jan 29;63(2). doi: 10.1128/AAC.01577-18. Print 2019 Feb.

Abstract

We show that trimethoprim (TMP), an antibiotic in current use, displays a strong synergistic effect on mutagenesis in when paired with the base analog 2-aminopurine (2AP), resulting in a 35-fold increase in mutation frequencies in the -Rif system. Combination therapies are often employed both as antibiotic treatments and in cancer chemotherapy. However, mutagenic effects of these combinations are rarely examined. An analysis of the mutational spectra of TMP, 2AP, and their combination indicates that together they trigger a response via an alteration in deoxynucleoside triphosphate (dNTP) ratios that neither compound alone can trigger. A similar, although less strong, response is seen with the frameshift mutagen ICR191 and 2AP. These results underscore the need for testing the effects on mutagenesis of combinations of antibiotics and chemotherapeutics.

摘要

我们表明,当与碱基类似物 2-氨基嘌呤(2AP)配对时,当前使用的抗生素甲氧苄啶(TMP)在时表现出强烈的协同诱变作用,导致 - Rif 系统中的突变频率增加 35 倍。联合疗法通常既用于抗生素治疗,也用于癌症化疗。然而,这些组合的诱变效应很少被检查。对 TMP、2AP 及其组合的突变谱分析表明,它们一起通过脱氧核苷三磷酸(dNTP)比值的改变引发反应,而单独使用任何一种化合物都无法引发这种反应。类似的,但强度较小的反应也发生在移码诱变剂 ICR191 和 2AP 中。这些结果强调了需要测试抗生素和化疗药物组合对诱变的影响。

相似文献

1
The Antibiotic Trimethoprim Displays Strong Mutagenic Synergy with 2-Aminopurine.
Antimicrob Agents Chemother. 2019 Jan 29;63(2). doi: 10.1128/AAC.01577-18. Print 2019 Feb.
2
Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action.
Antimicrob Agents Chemother. 2015 Dec 28;60(3):1515-20. doi: 10.1128/AAC.02485-15.
3
Mutagen Synergy: Hypermutability Generated by Specific Pairs of Base Analogs.
J Bacteriol. 2016 Sep 22;198(20):2776-83. doi: 10.1128/JB.00391-16. Print 2016 Oct 15.
4
Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome.
DNA Repair (Amst). 2003 May 13;2(5):593-608. doi: 10.1016/s1568-7864(03)00024-7.
5
Key microstructural mechanisms of the 2-aminopurine mutagenicity: Results of extensive quantum-chemical research.
J Biomol Struct Dyn. 2019 Jul;37(10):2716-2732. doi: 10.1080/07391102.2018.1495577. Epub 2019 Jan 8.
6
Mechanism of 2-aminopurine-stimulated mutagenesis in Escherichia coli.
Mutat Res. 2004 Jun 4;550(1-2):25-32. doi: 10.1016/j.mrfmmm.2004.01.008.
7
Mutational specificity of the base analogue, 2-aminopurine, in Escherichia coli.
Mutat Res. 1981 Aug;83(1):25-37. doi: 10.1016/0027-5107(81)90068-3.
8
Mutagenic and comutagenic effects of ethionine in Escherichia coli K12.
Mutat Res. 1986 Jul;174(3):183-7. doi: 10.1016/0165-7992(86)90148-x.

引用本文的文献

1
Recent progress in adaptive laboratory evolution of industrial microorganisms.
J Ind Microbiol Biotechnol. 2023 Feb 17;50(1). doi: 10.1093/jimb/kuac023.

本文引用的文献

1
Maladaptive DNA repair is the ultimate contributor to the death of trimethoprim-treated cells under aerobic and anaerobic conditions.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11512-11517. doi: 10.1073/pnas.1706236114. Epub 2017 Oct 9.
2
Mutational Consequences of Ciprofloxacin in Escherichia coli.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):6165-72. doi: 10.1128/AAC.01415-16. Print 2016 Oct.
3
Mutagen Synergy: Hypermutability Generated by Specific Pairs of Base Analogs.
J Bacteriol. 2016 Sep 22;198(20):2776-83. doi: 10.1128/JB.00391-16. Print 2016 Oct 15.
4
Extreme dNTP pool changes and hypermutability in dcd ndk strains.
Mutat Res. 2016 Feb-Mar;784-785:16-24. doi: 10.1016/j.mrfmmm.2015.12.004. Epub 2015 Dec 29.
5
Hypermutability and error catastrophe due to defects in ribonucleotide reductase.
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):18596-601. doi: 10.1073/pnas.1310849110. Epub 2013 Oct 28.
6
Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.
Genetics. 2013 Jun;194(2):409-20. doi: 10.1534/genetics.113.151837. Epub 2013 Apr 15.
7
Mutational consequences of dNTP pool imbalances in E. coli.
DNA Repair (Amst). 2013 Jan 1;12(1):73-9. doi: 10.1016/j.dnarep.2012.10.011. Epub 2012 Dec 6.
8
Replication fork collapse and genome instability in a deoxycytidylate deaminase mutant.
Mol Cell Biol. 2012 Nov;32(21):4445-54. doi: 10.1128/MCB.01062-12. Epub 2012 Aug 27.
9
Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and induced-mutagenesis in Escherichia coli.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19311-6. doi: 10.1073/pnas.1113664108. Epub 2011 Nov 14.
10
Role of high-fidelity Escherichia coli DNA polymerase I in replication bypass of a deoxyadenosine DNA-peptide cross-link.
J Bacteriol. 2011 Aug;193(15):3815-21. doi: 10.1128/JB.01550-10. Epub 2011 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验