Kim J, McGuffey C, Gautier D C, Link A, Kemp G E, Giraldez E M, Wei M S, Stephens R B, Kerr S, Poole P L, Madden R, Qiao B, Foord M E, Ping Y, McLean H S, Fernández J C, Beg F N
Center for Energy Research, University of California, San Diego, La Jolla CA, 92093-0417, USA.
Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Sci Rep. 2018 Dec 3;8(1):17538. doi: 10.1038/s41598-018-36106-8.
Intense lasers can accelerate protons in sufficient numbers and energy that the resulting beam can heat materials to exotic warm (10 s of eV temperature) states. Here we show with experimental data that a laser-driven proton beam focused onto a target heated it in a localized spot with size strongly dependent upon material and as small as 35 μm radius. Simulations indicate that cold stopping power values cannot model the intense proton beam transport in solid targets well enough to match the large differences observed. In the experiment a 74 J, 670 fs laser drove a focusing proton beam that transported through different thicknesses of solid Mylar, Al, Cu or Au, eventually heating a rear, thin, Au witness layer. The XUV emission seen from the rear of the Au indicated a clear dependence of proton beam transport upon atomic number, Z, of the transport layer: a larger and brighter emission spot was measured after proton transport through the lower Z foils even with equal mass density for supposed equivalent proton stopping range. Beam transport dynamics pertaining to the observed heated spot were investigated numerically with a particle-in-cell (PIC) code. In simulations protons moving through an Al transport layer result in higher Au temperature responsible for higher Au radiant emittance compared to a Cu transport case. The inferred finding that proton stopping varies with temperature in different materials, considerably changing the beam heating profile, can guide applications seeking to controllably heat targets with intense proton beams.
强激光能够加速产生数量足够多且能量足够高的质子,从而使产生的质子束能够将材料加热到奇异的温热(温度为数十电子伏特)状态。在此,我们通过实验数据表明,聚焦到靶材上的激光驱动质子束会在一个局部光斑中加热靶材,光斑尺寸强烈依赖于材料,半径小至35微米。模拟结果表明,冷阻止本领值无法很好地模拟强质子束在固体靶材中的传输情况,无法与所观察到的巨大差异相匹配。在实验中,一个74焦耳、670飞秒的激光驱动了一束聚焦质子束,该质子束穿过不同厚度的固态聚酯薄膜、铝、铜或金,最终加热了背面的薄金见证层。从金的背面观察到的极紫外发射表明,质子束传输明显依赖于传输层的原子序数Z:即使对于假定等效质子阻止范围具有相等的质量密度,在质子穿过低Z箔片后,测量到的发射光斑更大且更亮。使用粒子模拟(PIC)代码对与观察到的加热光斑相关的束流传输动力学进行了数值研究。在模拟中,与铜传输情况相比,质子穿过铝传输层会导致金的温度更高,从而导致金的辐射发射率更高。推断出的质子阻止在不同材料中随温度变化,从而显著改变束流加热分布的结果,可以为寻求用强质子束可控加热靶材的应用提供指导。