文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于医学应用的磁驱动胶囊微机器人系统的性能评估

Performance Evaluation of a Magnetically Actuated Capsule Microrobotic System for Medical Applications.

作者信息

Fu Qiang, Zhang Songyuan, Guo Shuxiang, Guo Jian

机构信息

Tianjin Key Laboratory for Control Theory & Application in Complicated Systems and Biomedical Robot Laboratory, School of Electrical and Electronic Engineering, Tianjin University of Technology, Binshui Xidao 391, Tianjin 300384, China.

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Micromachines (Basel). 2018 Dec 4;9(12):641. doi: 10.3390/mi9120641.


DOI:10.3390/mi9120641
PMID:30518087
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6316535/
Abstract

The paper aims to propose a magnetic actuated capsule microrobotic system, which is composed of a magnetically actuated microrobot with a screw jet mechanism, a driving system, and a positioning system. The magnetically actuated microrobot embedded an O-ring magnet as an actuator has potential for achieving a particular task, such as medical diagnose or drug delivery. The driving system composes of a three axes Helmholtz coils to generate a rotational magnetic field for controlling the magnetically actuated microrobot to realize the basic motion in pipe, e.g., forward/backward motion and upward/downward motion. The positioning system is used to detect the pose of the magnetically actuated microrobot in pipe. We will discuss the shape of the Helmholtz coils and the magnetic field around the O-ring magnet to obtain an optimal performance of the magnetically actuated microrobot. The experimental result indicated that the microrobot with screw jet motion has a flexible movement in pipe by adjusting the rotational magnetic field plane and the magnetic field changing frequency.

摘要

本文旨在提出一种磁驱动胶囊微机器人系统,该系统由具有螺旋喷射机制的磁驱动微机器人、驱动系统和定位系统组成。嵌入O形环磁体作为致动器的磁驱动微机器人具有完成特定任务的潜力,如医学诊断或药物输送。驱动系统由三轴亥姆霍兹线圈组成,用于产生旋转磁场,以控制磁驱动微机器人在管道中实现基本运动,例如向前/向后运动和向上/向下运动。定位系统用于检测磁驱动微机器人在管道中的姿态。我们将讨论亥姆霍兹线圈的形状以及O形环磁体周围的磁场,以获得磁驱动微机器人的最佳性能。实验结果表明,具有螺旋喷射运动的微机器人通过调整旋转磁场平面和磁场变化频率,在管道中具有灵活的运动能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/c91846683f08/micromachines-09-00641-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/534039f6ff24/micromachines-09-00641-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/63bea8756d73/micromachines-09-00641-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/3b6bb81a091d/micromachines-09-00641-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/60bfe262af50/micromachines-09-00641-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/26c981e46f7c/micromachines-09-00641-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/fd2f50ef4c75/micromachines-09-00641-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/7afc9eef8c28/micromachines-09-00641-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/36993587c243/micromachines-09-00641-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/cff873ca5a1d/micromachines-09-00641-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/aaf1223ce1be/micromachines-09-00641-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/327ade7e1c36/micromachines-09-00641-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/621798ed1c15/micromachines-09-00641-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/382d816e231c/micromachines-09-00641-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/5e6c9de885a1/micromachines-09-00641-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/ea95740dd303/micromachines-09-00641-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/27e06757fb47/micromachines-09-00641-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/eb9c2e1b3cbd/micromachines-09-00641-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/c91846683f08/micromachines-09-00641-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/534039f6ff24/micromachines-09-00641-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/63bea8756d73/micromachines-09-00641-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/3b6bb81a091d/micromachines-09-00641-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/60bfe262af50/micromachines-09-00641-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/26c981e46f7c/micromachines-09-00641-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/fd2f50ef4c75/micromachines-09-00641-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/7afc9eef8c28/micromachines-09-00641-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/36993587c243/micromachines-09-00641-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/cff873ca5a1d/micromachines-09-00641-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/aaf1223ce1be/micromachines-09-00641-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/327ade7e1c36/micromachines-09-00641-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/621798ed1c15/micromachines-09-00641-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/382d816e231c/micromachines-09-00641-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/5e6c9de885a1/micromachines-09-00641-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/ea95740dd303/micromachines-09-00641-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/27e06757fb47/micromachines-09-00641-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/eb9c2e1b3cbd/micromachines-09-00641-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240f/6316535/c91846683f08/micromachines-09-00641-g018.jpg

相似文献

[1]
Performance Evaluation of a Magnetically Actuated Capsule Microrobotic System for Medical Applications.

Micromachines (Basel). 2018-12-4

[2]
A novel hybrid microrobot using rotational magnetic field for medical applications.

Biomed Microdevices. 2015-4

[3]
Performance Evaluation of a Magnetically Driven Microrobot for Targeted Drug Delivery.

Micromachines (Basel). 2021-10-3

[4]
A Magnetically Controlled Soft Microrobot Steering a Guidewire in a Three-Dimensional Phantom Vascular Network.

Soft Robot. 2018-10-12

[5]
A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy.

Biotechnol Bioeng. 2015-8

[6]
Fabrication of Bilayer Magnetically Actuated L-Shaped Microrobot Based on Chitosan via Photolithography.

Polymers (Basel). 2022-12-15

[7]
Magnetically Actuated Helical Microrobot with Magnetic Nanoparticle Retrieval and Sequential Dual-Drug Release Abilities.

ACS Appl Mater Interfaces. 2023-6-14

[8]
Magnetic-acoustic actuated spinous microrobot for enhanced degradation of organic pollutants.

Ultrason Sonochem. 2024-1

[9]
Magnetically Actuated Soft Microrobot with Environmental Adaptative Multimodal Locomotion Towards Targeted Delivery.

Adv Sci (Weinh). 2024-11

[10]
Stabilization of Microrobot Motion Characteristics in Liquid Media.

Micromachines (Basel). 2018-7-23

引用本文的文献

[1]
Micro- and Nano-Bots for Infection Control.

Adv Mater. 2025-6

[2]
Optimal Motion Control of a Capsule Endoscope in the Stomach Utilizing a Magnetic Navigation System with Dual Permanent Magnets.

Micromachines (Basel). 2024-8-14

[3]
A Magnetically Capsule Robot for Biomedical Application.

Appl Bionics Biomech. 2022-7-21

[4]
Performance Evaluation of a Magnetically Driven Microrobot for Targeted Drug Delivery.

Micromachines (Basel). 2021-10-3

[5]
A Robotic Biopsy Endoscope with Magnetic 5-DOF Locomotion and a Retractable Biopsy Punch.

Micromachines (Basel). 2020-1-17

[6]
Development of a Capsule Robot for Exploring the Colon.

Micromachines (Basel). 2019-7-6

[7]
Single-Sided Near-Field Wireless Power Transfer by A Three-Dimensional Coil Array.

Micromachines (Basel). 2019-3-21

本文引用的文献

[1]
A novel hybrid microrobot using rotational magnetic field for medical applications.

Biomed Microdevices. 2015-4

[2]
3-D Localization Method for a Magnetically Actuated Soft Capsule Endoscope and Its Applications.

IEEE Trans Robot. 2013-6-25

[3]
Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers.

IEEE Trans Biomed Eng. 2014-2

[4]
A wireless capsule robot with spiral legs for human intestine.

Int J Med Robot. 2014-6

[5]
Design of a wireless anchoring and extending micro robot system for gastrointestinal tract.

Int J Med Robot. 2012-3-11

[6]
Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos).

Gastrointest Endosc. 2010-4-24

[7]
Robotic versus manual control in magnetic steering of an endoscopic capsule.

Endoscopy. 2009-12-16

[8]
M2A capsule endoscopy. A breakthrough diagnostic tool for small intestine imaging.

Gastroenterol Nurs. 2002

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索