Suppr超能文献

微机器人在液体介质中运动特性的稳定化

Stabilization of Microrobot Motion Characteristics in Liquid Media.

作者信息

Demircali Ali Anil, Uvet Huseyin

机构信息

Department of Mechatronics Engineering, Yildiz Technical University, 34349 Istanbul, Turkey.

出版信息

Micromachines (Basel). 2018 Jul 23;9(7):363. doi: 10.3390/mi9070363.

Abstract

Magnetically actuated microrobot in a liquid media is faced with the problem of head-tilting reaction caused by its hydrodynamic structure and its speed while moving horizontally. When the instance microrobot starts a lateral motion, the drag force acting on it increases. Thus, the microrobot is unable to move parallel to the surface due to the existence of drag force that cannot be neglected, particularly at high speeds such as >5 mm/s. The effect of it scales exponentially at different speeds and the head-tilting angle of the microrobot changes relative to the reference surface. To the best of our knowledge, there is no prior study on this problem, and no solution has been proposed so far. In this study, we developed and experimented with 3 control models to stabilize microrobot motion characteristics in liquid media to achieve accurate lateral locomotion. The microrobot moves in an untethered manner, and its localization is carried out by a neodymium magnet (grade N48) placed inside its polymer body. This permanent magnet is called a carrier-magnet. The fabricated microrobot is levitated diamagnetically using a pyrolytic graphite placed under it and an external permanent magnet, called a lifter-magnet (grade N48), aligned above it. The lifter-magnet is attached to a servo motor mechanism which can control carrier-magnet orientation along with roll and pitch axes. Controlling the angle of this servo motor, together with the lifter-magnet, allowed us to cope with the head-tilting reaction instantly. Based on the finite element method (FEM), analyses that were designed according to this experimental setup, the equations giving the relation of microrobot speed with servo motor angle along with the microrobot head-tilting angle with servo motor angle, were derived. The control inputs were obtained by COMSOL (version 5.3, COMSOL Inc., Stockholm, Sweden). Using these derived equations, the rule-based model, laser model, and hybrid model techniques were proposed in this study to decrease the head-tilting angle. Motion control algorithms were applied in di-ionized water medium. According to the results for these 3 control strategies, at higher speeds (>5 mm/s) and 5 mm horizontal motion trajectory, the average head-tilting angle was reduced to 2.7° with the ruled-based model, 1.1° with the laser model, and 0.7° with the hybrid model.

摘要

在液体介质中,磁驱动微型机器人面临着由其流体动力学结构和水平移动速度所引起的头部倾斜反应问题。当示例微型机器人开始横向运动时,作用在它上面的阻力会增加。因此,由于存在不可忽视的阻力,微型机器人无法平行于表面移动,尤其是在高速(如>5毫米/秒)时。其影响在不同速度下呈指数级变化,并且微型机器人相对于参考表面的头部倾斜角度也会改变。据我们所知,此前尚无关于此问题的研究,且目前也未提出解决方案。在本研究中,我们开发并试验了3种控制模型,以稳定微型机器人在液体介质中的运动特性,从而实现精确的横向移动。微型机器人以无缆方式移动,其定位由置于其聚合物主体内部的钕磁铁(N48级)来完成。这个永久磁铁被称为载体磁铁。制造的微型机器人通过置于其下方的热解石墨和对齐于其上方的外部永久磁铁(称为提升磁铁,N48级)以抗磁性方式悬浮。提升磁铁连接到一个伺服电机机构,该机构可以控制载体磁铁沿横滚和俯仰轴的方向。控制该伺服电机的角度,连同提升磁铁一起,使我们能够即时应对头部倾斜反应。基于有限元方法(FEM),根据此实验设置进行分析,推导得出了给出微型机器人速度与伺服电机角度关系以及微型机器人头部倾斜角度与伺服电机角度关系的方程。控制输入通过COMSOL(版本5.3,COMSOL公司,瑞典斯德哥尔摩)获得。利用这些推导方程,本研究提出了基于规则的模型、激光模型和混合模型技术来减小头部倾斜角度。运动控制算法应用于去离子水介质中。根据这3种控制策略的结果,在更高速度(>5毫米/秒)和5毫米水平运动轨迹下,基于规则的模型使平均头部倾斜角度降至2.7°,激光模型降至1.1°,混合模型降至0.7°。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afec/6082291/60cf38ec3714/micromachines-09-00363-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验