Department of Electrical Engineering, Indian Institute of Science, Karnataka 560012, India
J Acoust Soc Am. 2018 Nov;144(5):EL471. doi: 10.1121/1.5080466.
Second language learners of British English (BE) are typically trained for four intonation classes: Glide-up, Glide-down, Dive, and Take-off. Automatic four-way intonation classification could be useful to evaluate a learner's pronunciation. However, such automatic classification is challenging without having manually annotated tones, typically considered in intonation analysis and classification tasks. In this, a three-dimensional feature sequence is proposed representing temporal patterns in the utterance-level 0 contour using a perceptually motivated pitch transformation. Hidden Markov model based classification experiments conducted using a training material for teaching BE intonation demonstrate the benefit of the proposed approach over the baseline scheme considered.
英国英语(BE)的第二语言学习者通常接受四种语调类别的训练:升调、降调、降升调、升降调。自动四向语调分类对于评估学习者的发音可能很有用。但是,如果没有手动标注的音调,这种自动分类是具有挑战性的,而音调通常被认为是语调分析和分类任务中的重要因素。在本研究中,使用一种基于感知的音高变换,提出了一种三维特征序列,用于表示语句级 0 轮廓中的时间模式。使用用于教授 BE 语调的培训材料进行的基于隐马尔可夫模型的分类实验表明,与所考虑的基准方案相比,该方法具有优势。