Suppr超能文献

基于话语级基频轮廓中的时频模式和基于感知的基频变换的语调自动分类。

Automatic intonation classification using temporal patterns in utterance-level pitch contour and perceptually motivated pitch transformation.

机构信息

Department of Electrical Engineering, Indian Institute of Science, Karnataka 560012, India

出版信息

J Acoust Soc Am. 2018 Nov;144(5):EL471. doi: 10.1121/1.5080466.

Abstract

Second language learners of British English (BE) are typically trained for four intonation classes: Glide-up, Glide-down, Dive, and Take-off. Automatic four-way intonation classification could be useful to evaluate a learner's pronunciation. However, such automatic classification is challenging without having manually annotated tones, typically considered in intonation analysis and classification tasks. In this, a three-dimensional feature sequence is proposed representing temporal patterns in the utterance-level 0 contour using a perceptually motivated pitch transformation. Hidden Markov model based classification experiments conducted using a training material for teaching BE intonation demonstrate the benefit of the proposed approach over the baseline scheme considered.

摘要

英国英语(BE)的第二语言学习者通常接受四种语调类别的训练:升调、降调、降升调、升降调。自动四向语调分类对于评估学习者的发音可能很有用。但是,如果没有手动标注的音调,这种自动分类是具有挑战性的,而音调通常被认为是语调分析和分类任务中的重要因素。在本研究中,使用一种基于感知的音高变换,提出了一种三维特征序列,用于表示语句级 0 轮廓中的时间模式。使用用于教授 BE 语调的培训材料进行的基于隐马尔可夫模型的分类实验表明,与所考虑的基准方案相比,该方法具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验