Suppr超能文献

核酸外切酶 III(XthA)通过 DNA 克隆大肠杆菌来创造粘性末端。

Exonuclease III (XthA) Enforces DNA Cloning of Escherichia coli To Create Cohesive Ends.

机构信息

Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan.

Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan

出版信息

J Bacteriol. 2019 Feb 11;201(5). doi: 10.1128/JB.00660-18. Print 2019 Mar 1.

Abstract

has an ability to assemble DNA fragments with homologous overlapping sequences of 15 to 40 bp at each end. Several modified protocols have already been reported to improve this simple and useful DNA cloning technology. However, the molecular mechanism by which accomplishes such cloning is still unknown. In this study, we provide evidence that the cloning of is independent of both RecA and RecET recombinases but is dependent on XthA, a 3' to 5' exonuclease. Here, cloning of by XthA is referred to as cloning (iVEC). We also show that iVEC activity is reduced by deletion of the C-terminal domain of DNA polymerase I (PolA). Collectively, these results suggest the following mechanism of iVEC. First, XthA resects the 3' ends of linear DNA fragments that are introduced into cells, resulting in exposure of the single-stranded 5' overhangs. Then, the complementary single-stranded DNA ends hybridize each other, and gaps are filled by DNA polymerase I. Elucidation of the iVEC mechanism at the molecular level would further advance the development of DNA cloning technology. Already we have successfully demonstrated multiple-fragment assembly of up to seven fragments in combination with an effortless transformation procedure using a modified host strain for iVEC. Cloning of a DNA fragment into a vector is one of the fundamental techniques in recombinant DNA technology. Recently, an recombination system for DNA cloning was shown to enable the joining of multiple DNA fragments at once. Interestingly, potentially assembles multiple linear DNA fragments that are introduced into the cell. Improved protocols for this cloning have realized a high level of usability, comparable to that by recombination reactions. However, the mechanism of cloning is highly controversial. Here, we clarified the fundamental mechanism underlying cloning and also constructed a strain that was optimized for cloning. Additionally, we streamlined the procedure of cloning by using a single microcentrifuge tube.

摘要

具有将每个末端具有 15 到 40bp 同源重叠序列的 DNA 片段组装在一起的能力。已经有几种改进的方案被报道用于改善这种简单而有用的 DNA 克隆技术。然而, 完成这种克隆的分子机制仍然未知。在这项研究中,我们提供了证据表明, 克隆的过程独立于 RecA 和 RecET 重组酶,但依赖于 XthA,一种 3'到 5'外切核酸酶。在这里,XthA 介导的 克隆被称为 iVEC。我们还表明,缺失 DNA 聚合酶 I(PolA)的 C 末端结构域会降低 iVEC 的活性。总的来说,这些结果表明了 iVEC 的以下机制。首先,XthA 切除线性 DNA 片段的 3'末端,这些片段被引入到 细胞中,导致单链 5'突出端暴露。然后,互补的单链 DNA 末端彼此杂交,缺口由 DNA 聚合酶 I 填补。在分子水平上阐明 iVEC 的机制将进一步推动 DNA 克隆技术的发展。我们已经成功地证明了,在使用改良的宿主菌株进行 iVEC 的情况下,多达七个片段的组合和轻松的转化过程可以实现多片段组装。将 DNA 片段克隆到载体中是重组 DNA 技术的基本技术之一。最近,一种用于 DNA 克隆的 重组系统被证明可以一次连接多个 DNA 片段。有趣的是, 可以组装多个被引入细胞的线性 DNA 片段。这种 克隆的改进方案已经实现了高度的可用性,可与 重组反应相媲美。然而, 克隆的机制仍存在争议。在这里,我们阐明了 克隆的基本机制,并构建了一种针对 克隆优化的菌株。此外,我们通过使用单个微量离心管简化了 克隆的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30ac/6379578/292b2a8aea2d/JB.00660-18-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验