Suppr超能文献

Ultrastructural localization of anionic sites on the surface of yeast, hyphal and germ-tube forming cells of Candida albicans.

作者信息

Horisberger M, Clerc M F

机构信息

Nestlé Research Centre, Nestec Ltd., Lausanne/Switzerland.

出版信息

Eur J Cell Biol. 1988 Aug;46(3):444-52.

PMID:3053174
Abstract

The cell wall of Candida albicans contains chitin, beta-glucans and phosphorylated mannoproteins, and possesses a fuzzy coat which is thought to play a role in pathogenicity, phagocytosis, and adherence of this dimorphic yeast. Using scanning electron microscopy and the gold method, mannoproteins were detected on the whole surface of blastoconidia including the bud scars, but chitin was absent even after alpha-mannosidase treatment of the cells. The presence of surface beta-(1----6)glucan (but not beta(1----3)glucan) was observed only after extensive alpha-mannosidase and alkaline phosphatase treatments of blastoconidia. Using transmission and scanning electron microscopy, the locations of anionic sites were revealed by polycationic colloidal gold-chitosan complexes on the surface of blastoconidia, germ tubes and hyphae. Anionic sites were dispersed evenly over the surface of blastoconidia bearing bud scars. Depending upon the growth conditions, anionic sites could be detected on emerging buds and young cells. However, bud scars were always free of marking. When germ-tube formation was induced, anionic sites were present at different densities on all cell surfaces, the highest density being observed on cells with bud scars. Anionic sites were detected at a remarkably high density on all hyphal surfaces. An apical concentration of anionic sites was observed on germ tubes and hyphae. The distribution of anionic sites was not modified by endoglucosaminidase treatment of blastoconidia, germ tubes and hyphae. The anionic sites were associated with the fuzzy coat. As the hyphal form is regarded as possessing the greatest invasiveness, it is suggested that anionic sites play an important role in establishing tissue colonization by this human pathogen.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验