Suppr超能文献

在参与 DNA 损伤修复反应和细胞衰老的组蛋白 H3 和 H4 突变体中,以前未被描述的氨基酸残基。

Previously uncharacterized amino acid residues in histone H3 and H4 mutants with roles in DNA damage repair response and cellular aging.

机构信息

Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India.

Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA.

出版信息

FEBS J. 2019 Mar;286(6):1154-1173. doi: 10.1111/febs.14723. Epub 2018 Dec 28.

Abstract

Chromatin regulates gene expression and genome maintenance, and consists of histones and other components. The post-translational modification of histones plays a key role in maintaining the structure and function of chromatin under different pathophysiological stress conditions. Here, we investigate the functions of previously unexplored amino acid residues in histones H3 and H4. To do so, we screened a library of yeast histone mutants following DNA damage and identified that substitution mutations of histone H3 (H3Q5A/E and H3Q120A) and H4 (H4Y88A/E and H4R78K) render yeast cells sensitive to DNA-damaging agents. These histone mutants show an activated DNA damage response, Rad53 phosphorylation and Sml1 degradation in the presence of methyl methanesulfonate (MMS). In histone H3Q5A/E mutants, RNR2 and RNR3 genes were induced at low level, as was RNR3 in H4 histone mutants following DNA damage. In H3 mutant cells, the cell cycle was deregulated, leading to inefficient cell cycle arrest in the presence of MMS, and genes involved in aging and DNA damage repair pathways were constitutively upregulated. In H3 mutants (H3Q5A, H3Q5E and H3Q120A), we observed reduced chronological lifespan (CLS), compared with extended CLS in the H4R78K mutant. Histone mutants also showed altered H3K4me and H3K56ac modifications and improper activation of the stress responsive Slt2 and Hog1 kinases. Thus, we have determined the significance of previously uncharacterized residues of H3 and H4 in DNA damage response, cell cycle progression and cellular aging.

摘要

染色质调节基因表达和基因组维护,由组蛋白和其他成分组成。组蛋白的翻译后修饰在不同的病理生理应激条件下维持染色质的结构和功能中起着关键作用。在这里,我们研究了组蛋白 H3 和 H4 中以前未探索的氨基酸残基的功能。为此,我们在 DNA 损伤后筛选了酵母组蛋白突变体文库,并鉴定出组蛋白 H3(H3Q5A/E 和 H3Q120A)和 H4(H4Y88A/E 和 H4R78K)的取代突变使酵母细胞对 DNA 损伤剂敏感。这些组蛋白突变体在甲基甲磺酸(MMS)存在下显示出激活的 DNA 损伤反应、Rad53 磷酸化和 Sml1 降解。在组蛋白 H3Q5A/E 突变体中,RNR2 和 RNR3 基因在低水平诱导,而在 H4 组蛋白突变体中 RNR3 在 DNA 损伤后也被诱导。在 H3 突变体细胞中,细胞周期失调,导致在 MMS 存在下细胞周期阻滞效率降低,并且与衰老和 DNA 损伤修复途径相关的基因持续上调。在 H3 突变体(H3Q5A、H3Q5E 和 H3Q120A)中,与 H4R78K 突变体相比,我们观察到的时序寿命(CLS)缩短,而 CLS 延长。组蛋白突变体还表现出 H3K4me 和 H3K56ac 修饰的改变以及应激响应 Slt2 和 Hog1 激酶的不当激活。因此,我们确定了 H3 和 H4 中以前未表征的残基在 DNA 损伤反应、细胞周期进程和细胞衰老中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验