School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia.
Phys Chem Chem Phys. 2019 Jan 2;21(2):617-622. doi: 10.1039/c8cp05778h.
Two-dimensional (2D) Dirac materials have attracted extensive research interest due to their high carrier mobility and ballistic charge transport, and they hold great promise for next-generation nanoscale devices. Here, we report a computational discovery of a stable 2D Dirac material, an NiB6 monolayer, which is identified by an extensive structure search, and its dynamic and thermal stabilities are confirmed by phonon and ab initio molecular dynamics (AIMD) simulations. This monolayer structure possesses anisotropic elastic properties with a Young's modulus of 189 N m-1, which is higher than that of phosphorene or silicene. Electronic band calculations reveal a double Dirac cone feature near the Fermi level with a high Fermi velocity of 8.5 × 105 m s-1, and the results are robust against external strains. We also propose two possible synthesis approaches based on a stable Ni4B8+ precursor or by embedding Ni atoms into the δ4 boron framework. The present findings offer a strong physics basis for the design and synthesis of a novel 2D Dirac material.
二维(2D)狄拉克材料由于其高载流子迁移率和弹道电荷输运而引起了广泛的研究兴趣,它们为下一代纳米尺度器件提供了巨大的潜力。在这里,我们通过广泛的结构搜索发现了一种稳定的 2D 狄拉克材料——NiB6 单层,并通过声子和第一性原理分子动力学(AIMD)模拟确认了其动力学和热稳定性。这种单层结构具有各向异性弹性特性,杨氏模量为 189 N m-1,高于磷烯或硅烯。电子能带计算显示,在费米能级附近存在双狄拉克锥特征,费米速度高达 8.5×105 m s-1,且结果对外部应变具有鲁棒性。我们还提出了两种可能的合成方法,一种是基于稳定的 Ni4B8+前体,另一种是将 Ni 原子嵌入 δ4 硼骨架中。本研究结果为设计和合成新型 2D 狄拉克材料提供了坚实的物理基础。