Suppr超能文献

预测具有双狄拉克锥、超高费米速度以及通过自旋轨道耦合实现显著能隙打开的类石墨烯WB纳米片。

Predicting a graphene-like WB nanosheet with a double Dirac cone, an ultra-high Fermi velocity and significant gap opening by spin-orbit coupling.

作者信息

Zhang Chunmei, Jiao Yalong, Ma Fengxian, Bottle Steven, Zhao Mingwen, Chen Zhongfang, Du Aijun

机构信息

School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology, Garden Point Campus, Brisbane, QLD 4001, Australia.

School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

出版信息

Phys Chem Chem Phys. 2017 Feb 15;19(7):5449-5453. doi: 10.1039/c7cp00157f.

Abstract

The zero-band gap nature of graphene prevents it from performing as a semi-conductor in modern electronics. Although various graphene modification strategies have been developed to address this limitation, the very small band gap of these materials and the suppressed charge carrier mobility of the devices developed still significantly hinder graphene's applications. In this work, a two dimensional (2D) WB monolayer, which exhibits a double Dirac cone, was conceived and assessed using density functional theory (DFT) methods, which would provide a sizable band gap while maintaining higher charge mobility with a Fermi velocity of 1.099 × 10 m s. Strong spin-orbit-coupling can generate an observable band gap of up to 0.27 eV that primarily originates from the d-orbit of the heavy metal atom W; therefore a 2D WB nanosheet would be operable at room temperature (T = 300 K) and would be a promising candidate to fabricate nanoelectronics in the upcoming post-silicon era. The phonon-spectrum and ab initio molecular dynamics calculations further demonstrate the dynamic and thermal stability of such nanosheets, thus, suggesting a potentially synthesizable Dirac material.

摘要

石墨烯的零带隙特性使其无法在现代电子学中用作半导体。尽管已经开发出各种石墨烯改性策略来解决这一限制,但这些材料非常小的带隙以及所开发器件中受抑制的电荷载流子迁移率仍然严重阻碍了石墨烯的应用。在这项工作中,我们设想并使用密度泛函理论(DFT)方法评估了一种具有双狄拉克锥的二维(2D)WB单层,它将提供可观的带隙,同时保持较高的电荷迁移率,费米速度为1.099×10 m s。强自旋轨道耦合可产生高达0.27 eV的可观带隙,这主要源于重金属原子W的d轨道;因此,二维WB纳米片在室温(T = 300 K)下可运行,并且将是在即将到来的后硅时代制造纳米电子器件的有前途的候选材料。声子谱和从头算分子动力学计算进一步证明了此类纳米片的动态和热稳定性,因此表明这是一种潜在可合成的狄拉克材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验