Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid 28223, Spain.
Phytopathology. 2019 Jun;109(6):1003-1010. doi: 10.1094/PHYTO-08-18-0293-R. Epub 2019 Apr 22.
Multiple virus infections affect the competence of host plants to transmit disease. The effects of coinfection on transmission are expected to produce ecologically complex pathogen and host-pathogen interactions. However, the prediction of disease risk will rely on untangling nonrandom from random patterns of infection to identify underlying processes that drive these interactions. Are the spatial distributions of infections in complex multispecies systems random or not? For the first time, we use an empirical evaluation of this basic but nontrivial question to test the hypothesis that coinfection contributes to (i) nonrandom ecological interactions between hosts and viruses and (ii) structuring infection distributions. We use a novel approach that decomposed the ecological interactions of 11 generalist viruses in 47 host species in four habitats of an agroecosystem into single-infection and coinfection "modes." Then, we relate ecological structuring in infection networks to the distribution of infection using generalized regression models. The network analyses of coinfection showed that virus-host interactions occurred more often than expected at random in one of the four habitats, Edge. A pattern of specific interactions was shared between Edge and the ecosystem, indicating scale invariance. The regression modeling also showed that the plant community characteristics of Edge were unique in explaining infection distributions. The results showed that the spatial distribution of infection at the ecosystem level was not only a species-specific phenomenon but also, strongly structured by specific virus-virus and host-virus interactions. The evidence of scale invariance and the special role of Edge as a reservoir suggest that ecological interactions were less strongly structured by community differences among habitats than by wider-scale processes and traits underlying the interactions. Addressing whether reservoir communities significantly contribute to epidemiological processes at the ecosystem scale is a promising avenue for future research.
多种病毒感染会影响宿主植物传播疾病的能力。预期共感染对传播的影响会产生生态上复杂的病原体和宿主-病原体相互作用。然而,疾病风险的预测将依赖于从随机模式中梳理出非随机模式,以确定驱动这些相互作用的潜在过程。在复杂的多物种系统中,感染的空间分布是随机的还是非随机的?我们首次使用对这一基本但非平凡问题的实证评估来检验以下假设:共感染(i)有助于宿主和病毒之间的非随机生态相互作用,(ii)构建感染分布。我们使用一种新方法,将农业生态系统四个生境中 11 种通用病毒在 47 种宿主物种中的生态相互作用分解为单感染和共感染“模式”。然后,我们使用广义回归模型将感染网络中的生态结构与感染分布联系起来。共感染的网络分析表明,在四个生境之一的 Edge 中,病毒-宿主相互作用比随机发生的次数多。Edge 和生态系统之间共享了一种特定的相互作用模式,表明具有尺度不变性。回归建模还表明,Edge 的植物群落特征在解释感染分布方面具有独特性。结果表明,感染在生态系统水平上的空间分布不仅是一种特定于物种的现象,而且还受到特定的病毒-病毒和宿主-病毒相互作用的强烈结构。尺度不变性的证据和 Edge 作为储库的特殊作用表明,生态相互作用的结构不是由生境之间的群落差异决定的,而是由更广泛的过程和相互作用的潜在特征决定的。确定储库群落是否显著有助于生态系统尺度上的流行病学过程,是未来研究的一个有前途的方向。