Department of Physiology, University of Bern, Bern, Switzerland.
Center for Arrhythmia Research, Department of Medicine, University of Michigan, Ann Arbor, MI.
J Gen Physiol. 2019 Feb 4;151(2):131-145. doi: 10.1085/jgp.201812155. Epub 2018 Dec 12.
During physical exercise or stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor (β-AR) activation, resulting in protein kinase A (PKA)-mediated phosphorylation of the cardiac ryanodine receptor RyR2. PKA-dependent "hyperphosphorylation" of the RyR2 channel has been proposed as a major impairment that contributes to progression of heart failure. However, the sites of PKA phosphorylation and their phosphorylation status in cardiac diseases are not well defined. Among the known RyR2 phosphorylation sites, serine 2030 (S2030) remains highly controversial as a site of functional impact. We examined the contribution of RyR2-S2030 to Ca signaling and excitation-contraction coupling (ECC) in a transgenic mouse with an ablated RyR2-S2030 phosphorylation site (RyR2-S2030A). We assessed ECC gain by using whole-cell patch-clamp recordings and confocal Ca imaging during β-ARs stimulation with isoproterenol (Iso) and consistent SR Ca loading and L-type Ca current ( ) triggering. Under these conditions, ECC gain is diminished in mutant compared with WT cardiomyocytes. Resting Ca spark frequency (CaSpF) with Iso is also reduced by mutation of S2030. In permeabilized cells, when SR Ca pump activity is kept constant (using 2D12 antibody against phospholamban), cAMP does not change CaSpF in S2030A myocytes. Using Ca spark recovery analysis, we found that mutant RyR Ca sensitivity is not enhanced by Iso application, contrary to WT RyRs. Furthermore, ablation of RyR2-S2030 prevents acceleration of Ca waves and increases latency to the first spontaneous Ca release after a train of stimulations during Iso treatment. Together, these results suggest that phosphorylation at S2030 may represent an important step in the modulation of RyR2 activity during β-adrenergic stimulation and a potential target for the development of new antiarrhythmic drugs.
在体育锻炼或应激期间,交感神经系统通过β-肾上腺素能受体(β-AR)的激活来刺激心肌收缩力,导致蛋白激酶 A(PKA)介导的心肌兰尼碱受体 RyR2 的磷酸化。PKA 依赖性的 RyR2 通道“过度磷酸化”被认为是导致心力衰竭进展的主要损伤因素。然而,PKA 磷酸化的位点及其在心脏疾病中的磷酸化状态尚未得到很好的定义。在已知的 RyR2 磷酸化位点中,丝氨酸 2030(S2030)作为一个具有功能影响的位点仍然存在很大争议。我们在一个 RyR2-S2030 磷酸化位点(RyR2-S2030A)被剔除的转基因小鼠中研究了 RyR2-S2030 对 Ca 信号转导和兴奋-收缩偶联(ECC)的贡献。我们通过使用异丙肾上腺素(Iso)刺激β-AR 时的全细胞膜片钳记录和共聚焦 Ca 成像来评估 ECC 增益,同时保持 SR Ca 加载和 L 型 Ca 电流( )触发。在这些条件下,与 WT 心肌细胞相比,突变体的 ECC 增益降低。突变 S2030 也会降低 Iso 时的静息 Ca 火花频率(CaSpF)。在通透细胞中,当 SR Ca 泵活性保持不变(使用针对肌球蛋白轻链磷酸酶的 2D12 抗体)时,cAMP 不会改变 S2030A 肌细胞中的 CaSpF。通过 Ca 火花恢复分析,我们发现与 WT RyRs 相反,应用 Iso 不会增强突变 RyR 的 Ca 敏感性。此外,剔除 RyR2-S2030 可防止 Iso 处理时 Ca 波的加速,并增加刺激后第一个自发 Ca 释放的潜伏期。综上所述,这些结果表明,S2030 处的磷酸化可能是 β-肾上腺素能刺激期间 RyR2 活性调节的重要步骤,也是开发新型抗心律失常药物的潜在靶点。