Department of Chemistry, The University of Tokyo.
Proc Jpn Acad Ser B Phys Biol Sci. 2018;94(10):428-440. doi: 10.2183/pjab.94.028.
Single-molecule atomic-resolution real-time electron microscopic movie imaging is an emerging new tool for obtaining dynamic structural information on molecules and molecular assemblies. This method provides a hitherto inaccessible possibility to in situ observe the time evolution of chemical events at various temperatures from the beginning till the end, as demonstrated for the kinetics study of [2 + 2] cycloaddition of [60]fullerene molecules, which was found to occur via an excited state or via radical cation depending on the temperature. One unique feature of this methodology is that, by observing directly the reaction events, one can obtain information on the frequency of events unperturbed by molecular diffusion. With the obtained experimental data set, we provided the first experimental proof of what the quantum mechanical transition state theory predicted, in that isolated molecules behave as if all their accessible states were occupied in a random order. We also found that, under the 1-D reaction conditions, molecular-level information on a few hundred molecules suffices to deduce statistically meaningful kinetics data that match with those obtained by bulk experiments.
单分子原子分辨率实时电子显微镜电影成像是一种新兴的工具,可用于获取分子和分子组装体的动态结构信息。该方法提供了一种前所未有的可能性,可以从开始到结束原位观察各种温度下化学事件的时间演变,这在[60]富勒烯分子的[2+2]环加成动力学研究中得到了证明,该反应发现可以通过激发态或自由基阳离子发生,具体取决于温度。该方法的一个独特特征是,通过直接观察反应事件,可以获得不受分子扩散影响的事件频率信息。通过获得的实验数据集,我们首次提供了量子力学过渡态理论预测的实验证据,即孤立分子的行为似乎与其所有可及状态以随机顺序占据。我们还发现,在 1-D 反应条件下,几百个分子的分子水平信息足以推导出具有统计学意义的动力学数据,这些数据与通过体相实验获得的数据相匹配。