Suppr超能文献

心脏病知识发现中的数据准备系统综述研究

A Systematic Mapping Study of Data Preparation in Heart Disease Knowledge Discovery.

机构信息

Software Project Management Research Team, ENSIAS, University Mohammed V of Rabat, BP 713, Agdal, Rabat, Morocco.

Department of Informatics and Systems, Faculty of Computer Science, University of Murcia, Murcia, Spain.

出版信息

J Med Syst. 2018 Dec 13;43(1):17. doi: 10.1007/s10916-018-1134-z.

Abstract

The increasing amount of data produced by various biomedical and healthcare systems has led to a need for methodologies related to knowledge data discovery. Data mining (DM) offers a set of powerful techniques that allow the identification and extraction of relevant information from medical datasets, thus enabling doctors and patients to greatly benefit from DM, particularly in the case of diseases with high mortality and morbidity rates, such as heart disease (HD). Nonetheless, the use of raw medical data implies several challenges, such as missing data, noise, redundancy and high dimensionality, which make the extraction of useful and relevant information difficult and challenging. Intensive research has, therefore, recently begun in order to prepare raw healthcare data before knowledge extraction. In any knowledge data discovery (KDD) process, data preparation is the step prior to DM that deals with data imperfectness in order to improve its quality so as to satisfy the requirements and improve the performances of DM techniques. The objective of this paper is to perform a systematic mapping study (SMS) on data preparation for KDD in cardiology so as to provide an overview of the quantity and type of research carried out in this respect. The SMS consisted of a set of 58 selected papers published in the period January 2000 and December 2017. The selected studies were analyzed according to six criteria: year and channel of publication, preparation task, medical task, DM objective, research type and empirical type. The results show that a high amount of data preparation research was carried out in order to improve the performance of DM-based decision support systems in cardiology. Researchers were mainly interested in the data reduction preparation task and particularly in feature selection. Moreover, the majority of the selected studies focused on classification for the diagnosis of HD. Two main research types were identified in the selected studies: solution proposal and evaluation research, and the most frequently used empirical type was that of historical-based evaluation.

摘要

日益增长的各种生物医学和医疗保健系统所产生的数据量,导致了对与知识数据发现相关的方法的需求。数据挖掘 (DM) 提供了一组强大的技术,允许从医疗数据集识别和提取相关信息,从而使医生和患者能够极大地受益于 DM,特别是在死亡率和发病率高的疾病,如心脏病 (HD) 的情况下。然而,使用原始医疗数据意味着存在一些挑战,例如缺失数据、噪声、冗余和高维性,这使得从数据中提取有用和相关信息变得困难和具有挑战性。因此,最近已经开始进行密集的研究,以便在提取知识之前准备原始医疗保健数据。在任何知识数据发现 (KDD) 过程中,数据准备是 DM 之前的步骤,用于处理数据的不完整性,以提高其质量,从而满足 DM 技术的要求并提高其性能。本文的目的是对心脏病学中的 KDD 数据准备进行系统映射研究 (SMS),以便概述在这方面进行的研究的数量和类型。SMS 由 2000 年 1 月至 2017 年 12 月期间发表的 58 篇选定论文组成。根据以下六个标准对选定的研究进行了分析:出版年份和渠道、准备任务、医疗任务、DM 目标、研究类型和经验类型。结果表明,为了提高基于 DM 的决策支持系统在心脏病学中的性能,进行了大量的数据准备研究。研究人员主要对数据减少准备任务感兴趣,特别是对特征选择感兴趣。此外,选定研究中的大多数研究都集中在 HD 诊断的分类上。在选定的研究中确定了两种主要的研究类型:解决方案提案和评估研究,最常用的经验类型是基于历史的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验