Suppr超能文献

用于癌症基因发现的体外转座子介导的遗传筛选

Ex Vivo Transposon-Mediated Genetic Screens for Cancer Gene Discovery.

作者信息

O'Donnell Kathryn A, Guo Yabin, Suresh Shruthy, Updegraff Barrett L, Zhou Xiaorong

机构信息

Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA.

Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA.

出版信息

Methods Mol Biol. 2019;1907:145-157. doi: 10.1007/978-1-4939-8967-6_12.

Abstract

Transposon mutagenesis has emerged as a powerful methodology for functionally annotating cancer genomes. Although in vivo transposon-mediated forward genetic screens have proven to be valuable for cancer gene identification, they are also time consuming and resource intensive. To facilitate the rapid and cost-effective identification of genes that regulate tumor-promoting pathways, we developed a complementary ex vivo transposon mutagenesis approach wherein human or mouse cells growing in culture are mutagenized and screened for the acquisition of specific phenotypes in vitro or in vivo, such as growth factor independence or tumor-forming ability. This approach allows discovery of both gain- and loss-of-function mutations in the same screen. Transposon insertions sites are recovered by high-throughput sequencing. We recently applied this system to comprehensively identify and validate genes that promote growth factor independence and transformation of murine Ba/F3 cells. Here we describe a method for performing ex vivo Sleeping Beauty-mediated mutagenesis screens in these cells, which may be adapted for the acquisition of many different phenotypes in distinct cell types.

摘要

转座子诱变已成为一种对癌症基因组进行功能注释的强大方法。尽管体内转座子介导的正向遗传筛选已被证明对癌症基因鉴定很有价值,但它们也耗时且资源密集。为了促进快速且经济高效地鉴定调控肿瘤促进途径的基因,我们开发了一种互补的体外转座子诱变方法,其中在培养中生长的人或小鼠细胞被诱变,并在体外或体内筛选特定表型的获得,如生长因子非依赖性或肿瘤形成能力。这种方法允许在同一筛选中发现功能获得性和功能丧失性突变。通过高通量测序回收转座子插入位点。我们最近应用该系统全面鉴定和验证促进小鼠Ba/F3细胞生长因子非依赖性和转化的基因。在此,我们描述一种在这些细胞中进行体外睡美人转座酶介导的诱变筛选的方法,该方法可适用于在不同细胞类型中获得许多不同的表型。

相似文献

1
Ex Vivo Transposon-Mediated Genetic Screens for Cancer Gene Discovery.
Methods Mol Biol. 2019;1907:145-157. doi: 10.1007/978-1-4939-8967-6_12.
2
PiggyBac Transposon-Based Insertional Mutagenesis in Mice.
Methods Mol Biol. 2019;1907:171-183. doi: 10.1007/978-1-4939-8967-6_14.
4
Cancer Gene Discovery Utilizing Sleeping Beauty Transposon Mutagenesis.
Methods Mol Biol. 2019;1907:161-170. doi: 10.1007/978-1-4939-8967-6_13.
6
Advances in functional genetic screening with transposons and CRISPR/Cas9 to illuminate cancer biology.
Curr Opin Genet Dev. 2018 Apr;49:85-94. doi: 10.1016/j.gde.2018.03.006. Epub 2018 Mar 26.
7
PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice.
Science. 2010 Nov 19;330(6007):1104-7. doi: 10.1126/science.1193004. Epub 2010 Oct 14.
8
Transposon-mediated mutagenesis of somatic cells in the mouse for cancer gene identification.
Methods. 2009 Nov;49(3):282-6. doi: 10.1016/j.ymeth.2009.07.002. Epub 2009 Jul 14.
9
Identification of cancer driver genes using Sleeping Beauty transposon mutagenesis.
Cancer Sci. 2021 Jun;112(6):2089-2096. doi: 10.1111/cas.14901. Epub 2021 May 1.
10
Transposon-based screens for cancer gene discovery in mouse models.
Semin Cancer Biol. 2010 Aug;20(4):261-8. doi: 10.1016/j.semcancer.2010.05.003. Epub 2010 May 15.

引用本文的文献

1
Understanding cancer drug resistance with functional genomic screens: Application to MAPK inhibition in cutaneous melanoma.
iScience. 2023 Aug 31;26(10):107805. doi: 10.1016/j.isci.2023.107805. eCollection 2023 Oct 20.

本文引用的文献

1
Comprehensive Ex Vivo Transposon Mutagenesis Identifies Genes That Promote Growth Factor Independence and Leukemogenesis.
Cancer Res. 2016 Feb 15;76(4):773-86. doi: 10.1158/0008-5472.CAN-15-1697. Epub 2015 Dec 16.
2
The utility of transposon mutagenesis for cancer studies in the era of genome editing.
Genome Biol. 2015 Oct 19;16:229. doi: 10.1186/s13059-015-0794-y.
3
Therapeutically Targetable ALK Mutations in Leukemia.
Cancer Res. 2015 Jun 1;75(11):2146-50. doi: 10.1158/0008-5472.CAN-14-1576.
4
Human somatic cell mutagenesis creates genetically tractable sarcomas.
Nat Genet. 2014 Sep;46(9):964-72. doi: 10.1038/ng.3065. Epub 2014 Aug 17.
5
Sleeping Beauty mutagenesis: exploiting forward genetic screens for cancer gene discovery.
Curr Opin Genet Dev. 2014 Feb;24:16-22. doi: 10.1016/j.gde.2013.11.004. Epub 2013 Dec 20.
6
The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling.
Immunol Rev. 2012 Nov;250(1):277-302. doi: 10.1111/j.1600-065X.2012.01164.x.
8
A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):E1377-86. doi: 10.1073/pnas.1115433109. Epub 2012 May 3.
9
Janus kinase deregulation in leukemia and lymphoma.
Immunity. 2012 Apr 20;36(4):529-41. doi: 10.1016/j.immuni.2012.03.017.
10
An insertional mutagenesis screen identifies genes that cooperate with Mll-AF9 in a murine leukemogenesis model.
Blood. 2012 May 10;119(19):4512-23. doi: 10.1182/blood-2010-04-281428. Epub 2012 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验