使用惯性测量单元和机器学习在训练环境中检测板球快速投球。

Cricket fast bowling detection in a training setting using an inertial measurement unit and machine learning.

机构信息

a Sport Performance Research Institute New Zealand , AUT University , Auckland , New Zealand.

b Manukau Institute of Technology, School of Sport , Auckland , New Zealand.

出版信息

J Sports Sci. 2019 Jun;37(11):1220-1226. doi: 10.1080/02640414.2018.1553270. Epub 2018 Dec 13.

Abstract

Fast bowlers are at a high risk of overuse injuries. There are specific bowling frequency ranges known to have negative or protective effects on fast bowlers. Inertial measurement units (IMUs) can classify movements in sports, however, some commercial products can be too expensive for the amateur athlete. As a large number of the world's population has access to an IMU (e.g. smartphones), a system that works on a range of different IMUs may increase the accessibility of automated workload monitoring in sport. Seventeen elite fast bowlers in a training setting were used to train and/or validate five machine learning models by bowling and performing fielding drills. The accuracy of machine learning models trained using data from all three bowling phases (pre-delivery, delivery and post-delivery) were compared to those trained using only the delivery phase at a sampling rate of 250 Hz. Next, models were trained using data down-sampled to 125 Hz, 50 Hz, and 25 Hz to mimic results from lower specification sensors. Models trained using only the delivery phase showed similar accuracy (> 95%) to those trained using all three bowling phases. When delivery-phase data were down-sampled, the accuracy was maintained across all models and sampling frequencies (>96%).

摘要

快投手有很高的过度使用受伤风险。有一些特定的投球频率范围被认为对快投手有负面或保护作用。惯性测量单元 (IMU) 可以对运动中的动作进行分类,但是,一些商业产品对于业余运动员来说可能过于昂贵。由于世界上很多人都可以使用 IMU(例如智能手机),因此一种可以在多种不同的 IMU 上工作的系统可能会增加运动中自动化工作量监测的可及性。在训练环境中使用了 17 名精英快投手来训练和/或验证五个机器学习模型,方法是投球和进行守备训练。比较了使用来自所有三个投球阶段(预投球、投球和投球后)的数据训练的机器学习模型的准确性,与仅使用投球阶段在 250 Hz 采样率下训练的模型的准确性。接下来,使用数据以 125 Hz、50 Hz 和 25 Hz 进行下采样来训练模型,以模拟来自低规格传感器的结果。仅使用投球阶段训练的模型与使用所有三个投球阶段训练的模型具有相似的准确性(>95%)。当投球阶段数据被下采样时,所有模型和采样频率(>96%)的准确性都得到了保持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索