Suppr超能文献

一种贝叶斯方法来识别比特币用户。

A Bayesian approach to identify Bitcoin users.

机构信息

Dept. of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary.

Business Unit IT & Cloud Products, Ericsson Telecommunications Hungary, Budapest, Hungary.

出版信息

PLoS One. 2018 Dec 13;13(12):e0207000. doi: 10.1371/journal.pone.0207000. eCollection 2018.

Abstract

Bitcoin is a digital currency and electronic payment system operating over a peer-to-peer network on the Internet. One of its most important properties is the high level of anonymity it provides for its users. The users are identified by their Bitcoin addresses, which are random strings in the public records of transactions, the blockchain. When a user initiates a Bitcoin transaction, his Bitcoin client program relays messages to other clients through the Bitcoin network. Monitoring the propagation of these messages and analyzing them carefully reveal hidden relations. In this paper, we develop a mathematical model using a probabilistic approach to link Bitcoin addresses and transactions to the originator IP address. To utilize our model, we carried out experiments by installing more than a hundred modified Bitcoin clients distributed in the network to observe as many messages as possible. During a two month observation period we were able to identify several thousand Bitcoin clients and bind their transactions to geographical locations.

摘要

比特币是一种数字货币和电子支付系统,它在互联网上的点对点网络上运行。它最重要的特点之一是为其用户提供了高度的匿名性。用户通过比特币地址来识别,比特币地址是区块链中交易公共记录中的随机字符串。当用户发起比特币交易时,他的比特币客户端程序通过比特币网络将消息中继给其他客户端。监测这些消息的传播并仔细分析它们,可以揭示隐藏的关系。在本文中,我们使用概率方法开发了一个数学模型,将比特币地址和交易与发起者的 IP 地址联系起来。为了利用我们的模型,我们通过在网络中安装一百多个修改后的比特币客户端来进行实验,以观察尽可能多的消息。在两个月的观察期内,我们能够识别出数千个比特币客户端,并将它们的交易绑定到地理位置。

相似文献

1
A Bayesian approach to identify Bitcoin users.
PLoS One. 2018 Dec 13;13(12):e0207000. doi: 10.1371/journal.pone.0207000. eCollection 2018.
2
Unobtrusive monitoring: Statistical dissemination latency estimation in Bitcoin's peer-to-peer network.
PLoS One. 2020 Dec 10;15(12):e0243475. doi: 10.1371/journal.pone.0243475. eCollection 2020.
3
Strangely mined bitcoins: Empirical analysis of anomalies in the bitcoin blockchain transaction network.
PLoS One. 2021 Sep 30;16(9):e0258001. doi: 10.1371/journal.pone.0258001. eCollection 2021.
4
Scalable funding of Bitcoin micropayment channel networks.
R Soc Open Sci. 2018 Aug 29;5(8):180089. doi: 10.1098/rsos.180089. eCollection 2018 Aug.
5
Deciphering Bitcoin Blockchain Data by Cohort Analysis.
Sci Data. 2022 Apr 7;9(1):136. doi: 10.1038/s41597-022-01254-0.
6
Illegal Community Detection in Bitcoin Transaction Networks.
Entropy (Basel). 2023 Jul 16;25(7):1069. doi: 10.3390/e25071069.
7
DUSTBot: A duplex and stealthy P2P-based botnet in the Bitcoin network.
PLoS One. 2019 Dec 20;14(12):e0226594. doi: 10.1371/journal.pone.0226594. eCollection 2019.
8
An Introduction to the Blockchain and Its Implications for Libraries and Medicine.
Med Ref Serv Q. 2017 Jul-Sep;36(3):273-279. doi: 10.1080/02763869.2017.1332261.
9
Fitness preferential attachment as a driving mechanism in bitcoin transaction network.
PLoS One. 2019 Aug 23;14(8):e0219346. doi: 10.1371/journal.pone.0219346. eCollection 2019.
10
Statistical Analysis of the Exchange Rate of Bitcoin.
PLoS One. 2015 Jul 29;10(7):e0133678. doi: 10.1371/journal.pone.0133678. eCollection 2015.

引用本文的文献

1
Blockchain Technology, Cryptocurrency: Entropy-Based Perspective.
Entropy (Basel). 2022 Apr 15;24(4):557. doi: 10.3390/e24040557.
2
Switching intention to crypto-currency market: Factors predisposing some individuals to risky investment.
PLoS One. 2020 Jun 4;15(6):e0234155. doi: 10.1371/journal.pone.0234155. eCollection 2020.
3
Framework and algorithms for identifying honest blocks in blockchain.
PLoS One. 2020 Jan 8;15(1):e0227531. doi: 10.1371/journal.pone.0227531. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验