Suppr超能文献

奇异挖掘的比特币:比特币区块链交易网络异常的实证分析。

Strangely mined bitcoins: Empirical analysis of anomalies in the bitcoin blockchain transaction network.

机构信息

Department of Computer Science, Reykjavik University, Reykjavik, Iceland.

出版信息

PLoS One. 2021 Sep 30;16(9):e0258001. doi: 10.1371/journal.pone.0258001. eCollection 2021.

Abstract

The blockchain technology introduced by bitcoin, with its decentralised peer-to-peer network and cryptographic protocols, provides a public and accessible database of bitcoin transactions that have attracted interest from both economics and network science as an example of a complex evolving monetary network. Despite the known cryptographic guarantees present in the blockchain, there exists significant evidence of inconsistencies and suspicious behavior in the chain. In this paper, we examine the prevalence and evolution of two types of anomalies occurring in coinbase transactions in blockchain mining, which we reported on in earlier research. We further develop our techniques for investigating the impact of these anomalies on the blockchain transaction network, by building networks induced by anomalous coinbase transactions at regular intervals and calculating a range of network measures, including degree correlation and assortativity, as well as inequality in terms of wealth and anomaly ratio using the Gini coefficient. We obtain time series of network measures calculated over the full transaction network and three sub-networks. Inspecting trends in these time series allows us to identify a period in time with particularly strange transaction behavior. We then perform a frequency analysis of this time period to reveal several blocks of highly anomalous transactions. Our technique represents a novel way of using network science to detect and investigate cryptographic anomalies.

摘要

比特币引入的区块链技术,其去中心化的点对点网络和加密协议,提供了一个比特币交易的公共和可访问的数据库,作为复杂演变的货币网络的一个例子,引起了经济学和网络科学的兴趣。尽管区块链中存在已知的加密保证,但在链中存在明显的不一致和可疑行为的证据。在本文中,我们研究了在区块链挖掘中的coinbase 交易中发生的两种异常的普遍性和演变,我们在之前的研究中报告了这两种异常。我们通过在固定时间间隔内构建由异常 coinbase 交易引起的网络,并计算一系列网络度量,包括度相关性和聚类系数,以及使用基尼系数衡量财富和异常比的不平等程度,进一步发展了我们调查这些异常对区块链交易网络影响的技术。我们获得了在整个交易网络和三个子网上计算的网络度量的时间序列。检查这些时间序列的趋势可以让我们识别出一段时间内特别奇怪的交易行为。然后,我们对这个时间段进行频率分析,揭示了一些高度异常的交易块。我们的技术代表了一种使用网络科学来检测和调查加密异常的新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de08/8483420/5069cf1ed1b7/pone.0258001.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验