Suppr超能文献

基于 QuickBird 图像的局部极大值滤波法估算林分密度:以北京森林为例。

QuickBird image-based estimation of tree stand density using local maxima filtering method: A case study in a Beijing forest.

机构信息

Key Laboratory of Precision Forestry, Forestry College, Beijing Forestry University, Beijing, China.

National-Local Joint Engineering Laboratory of Geo-spatial Information Technology, Hunan University of Science and Technology, Xiangtan, Hunan, China.

出版信息

PLoS One. 2018 Dec 13;13(12):e0208256. doi: 10.1371/journal.pone.0208256. eCollection 2018.

Abstract

The stand density of trees affects stand growth and is useful for estimating other forests structure parameters. We studied tree stand density in Jiufeng National Forest Park in Beijing. The number of spectral local maxima points (NSLMP) calculated within each sample plot was extracted by the spectral maximum filtering method using QuickBird imagery. Regression analysis of NSLMP and the true stand density collected by ground measurements using differential GPS and the total station were used to estimate stand density of the study area. We used NSLMP as an independent variable and the actual stand density as the dependent variable to develop separate statistical models for all stands in the coniferous forest and broadleaf forest. By testing the different combination of Normalized Difference Vegetation Index (NDVI) thresholds and window sizes, the optimal selection was identified. The combination of a 3 × 3 window size and NDVI ≥ 0.3 threshold in coniferous forest produced the best result using near-infrared band (coniferous forest R2 = 0.79, RMSE = 12.60). The best combination for broadleaf forest was a 3 × 3 window size and NDVI ≥ 0.1 with R2 = 0.44, RMSE = 9.02 using near-infrared band. The combination of window size and NDVI threshold for all unclassified forest was 3 × 3 window size and NDVI ≥ 0.3 with R2 = 0.70, RMSE = 11.20 using near-infrared band. A stand density planning map was constructed using the best models applied for different forest types. Different forest types require the use of different combination strategies to best extract the stand density by using the local maximum (LM). The proposed method uses a combination of high spatial resolution imagery and sampling plots strategy to estimate stand density.

摘要

树木的立木密度会影响林分生长,并且有助于估计其他森林结构参数。我们研究了北京鹫峰国家森林公园的树木立木密度。使用 QuickBird 图像,通过光谱极大值滤波法提取每个样地内的光谱局部极大值点数(NSLMP)。通过回归分析 NSLMP 与差分全球定位系统(GPS)和全站仪实测的真实立木密度,估计研究区的林分密度。我们使用 NSLMP 作为自变量,实际立木密度作为因变量,为针叶林和阔叶林的所有林分分别建立统计模型。通过测试不同的归一化植被指数(NDVI)阈值和窗口大小的组合,确定了最优选择。在针叶林中,3×3 窗口大小和 NDVI≥0.3 的阈值组合产生了最好的结果(针叶林 R2=0.79,RMSE=12.60)。在阔叶林,3×3 窗口大小和 NDVI≥0.1 的最佳组合为 R2=0.44,RMSE=9.02(近红外波段)。对于所有未分类的森林,窗口大小和 NDVI 阈值的最佳组合为 3×3 窗口大小和 NDVI≥0.3,R2=0.70,RMSE=11.20(近红外波段)。使用不同森林类型的最佳模型构建了立木密度规划图。不同的森林类型需要使用不同的组合策略,以便通过使用局部最大值(LM)最佳地提取立木密度。该方法使用高空间分辨率图像和采样样地策略来估计立木密度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a4/6292665/0774018eb9ab/pone.0208256.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验