Suppr超能文献

方机学的发展:用于系统阐释联合治疗潜在协同机制

Development of Fangjiomics for Systems Elucidation of Synergistic Mechanism Underlying Combination Therapy.

作者信息

Wei Peng-Lu, Gu Hao, Liu Jun, Wang Zhong

机构信息

Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.

出版信息

Comput Struct Biotechnol J. 2018 Nov 20;16:565-572. doi: 10.1016/j.csbj.2018.10.015. eCollection 2018.

Abstract

The rapid development of omics technology provides an opportunity for fulfilling the understanding of the synergistic mechanism of combination therapy. However, a systems theory to analyze synergy remains an ongoing challenge. Fangjiomics is a novel systems science based on a holistic theory integrated with reductionism which has been utilized to systematically elucidate the synergistic mechanisms underlying combination therapy using multi-target-, pathway- or network-based quantitative methods. Besides, our ability to understand the polyhierarchical structure in synergy is driven based on multi-level omics data fusion in Fangjiomics. According to the basic principle of "", further global integration across various omics platforms and phenotype-driven quantitative multi-scale modeling would accelerate development in Fangjiomics-based dissection of synergy in multi-drug combination therapies.

摘要

组学技术的快速发展为深入理解联合治疗的协同机制提供了契机。然而,分析协同作用的系统理论仍是一项持续的挑战。方剂组学是一种基于整体论与还原论相结合的新型系统科学,已被用于运用基于多靶点、通路或网络的定量方法系统阐释联合治疗的协同机制。此外,我们对方剂组学中协同作用的多层次结构的理解能力是基于多组学数据融合驱动的。根据“”的基本原理,跨各种组学平台的进一步全局整合以及表型驱动的定量多尺度建模将加速基于方剂组学剖析多药联合治疗协同作用的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c525/6279955/46c28b97158d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验