Hussain Salik
Department of Physiology and Pharmacology, Robert C. Byrd Health Science Center, School of Medicine,, West Virginia University, Morgantown, WV, USA.
Methods Mol Biol. 2019;1894:123-131. doi: 10.1007/978-1-4939-8916-4_7.
Mitochondria hold a critical role in cell metabolism and homeostasis. Mitochondrial injury plays central part in deciding cell fate especially in programmed cell death pathways. Various nanomaterials lead to different cell death modalities by inducing mitochondrial injury. Mitochondrial injury is manifested as multiple biochemical events ranging from altered energy production, mitochondrial outer membrane permeability, release of pro-apoptotic BCl-2 family proteins, loss of mitochondrial inner membrane potential, mitochondrial swelling, and disruption of mitochondrial structure leading to eventual lysis of mitochondria. Mitochondrial membrane permeability (loss of mitochondrial membrane potential) is a critical event in deciding cell fate. This chapter presents an overview of nanomaterial-induced loss of mitochondrial membrane potential and discusses potential nano-specific artifacts in these assays. Finally, a detailed methodology to accurately quantify and validate the loss of mitochondrial membrane potential after nanomaterial exposures is presented.
线粒体在细胞代谢和内环境稳态中起着关键作用。线粒体损伤在决定细胞命运中起核心作用,尤其是在程序性细胞死亡途径中。各种纳米材料通过诱导线粒体损伤导致不同的细胞死亡方式。线粒体损伤表现为多种生化事件,包括能量产生改变、线粒体外膜通透性改变、促凋亡BCl-2家族蛋白释放、线粒体内膜电位丧失、线粒体肿胀以及线粒体结构破坏,最终导致线粒体裂解。线粒体膜通透性(线粒体内膜电位丧失)是决定细胞命运的关键事件。本章概述了纳米材料诱导的线粒体内膜电位丧失,并讨论了这些检测中潜在的纳米特异性假象。最后,介绍了一种准确量化和验证纳米材料暴露后线粒体内膜电位丧失的详细方法。