Suppr超能文献

利用支持向量机和回归建模探索鉴定有效化合物的替代策略。

Exploring Alternative Strategies for the Identification of Potent Compounds Using Support Vector Machine and Regression Modeling.

机构信息

Data Science Center and Graduate School of Science and Technology , Nara Institute of Science and Technology , 8916-5 Takayama-cho , Ikoma , Nara 630-0192 , Japan.

Department of Chemical System Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan.

出版信息

J Chem Inf Model. 2019 Mar 25;59(3):983-992. doi: 10.1021/acs.jcim.8b00584. Epub 2018 Dec 14.

Abstract

Support vector regression (SVR) is a premier approach for the prediction of compound potency. Given the conceptual link between support vector machine (SVM) and SVR modeling, SVR is capable of accounting for continuous and discontinuous structure-activity relationships (SARs) in potency prediction, which further extends the classical quantitative SAR (QSAR) paradigm. In the context of virtual compound screening, compound potency prediction can be applied to identify the most potent compounds that are available or enrich database selection sets with potent compounds. To these ends, we have evaluated new potency prediction strategies. Conventional (direct) potency prediction using SVR was compared to two-stage SVM-SVR modeling and potency prediction using SVR models trained in the presence of active and inactive compounds, a previously unconsidered approach. The latter models were found to maximize the recall of potent compounds but were least accurate in predicting high potency values. For this purpose, direct SVR predictions were preferred. However, the best balance between accurate potency predictions and enrichment of potent compounds in database selection sets was achieved by combined SVM-SVR modeling. Taken together, our findings further extend current approaches for compound potency prediction in virtual compound screening.

摘要

支持向量回归(SVR)是一种预测化合物效力的主要方法。鉴于支持向量机(SVM)和 SVR 建模之间的概念联系,SVR 能够解释效力预测中的连续和不连续结构-活性关系(SAR),从而进一步扩展了经典的定量结构-活性关系(QSAR)范式。在虚拟化合物筛选的背景下,化合物效力预测可用于识别可用的最有效化合物,或用有效化合物丰富数据库选择集。为此,我们评估了新的效力预测策略。使用 SVR 的常规(直接)效力预测与两阶段 SVM-SVR 建模和在活性和非活性化合物存在的情况下使用 SVR 模型进行的效力预测进行了比较,这是一种以前未考虑的方法。后一种模型被发现可以最大限度地提高有效化合物的召回率,但在预测高效力值方面的准确性最低。为此,首选直接 SVR 预测。然而,在准确预测效力和在数据库选择集中富集有效化合物之间取得最佳平衡的是组合的 SVM-SVR 建模。总之,我们的发现进一步扩展了虚拟化合物筛选中化合物效力预测的当前方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验