Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität , Dahlmannstr. 2, D-53113 Bonn, Germany.
J Chem Inf Model. 2014 Oct 27;54(10):2654-63. doi: 10.1021/ci5003944. Epub 2014 Sep 17.
Matched molecular pairs (MMPs) consist of pairs of compounds that are transformed into each other by a substructure exchange. If MMPs are formed by compounds sharing the same biological activity, they encode a potency change. If the potency difference between MMP compounds is very small, the substructure exchange (chemical transformation) encodes a bioisosteric replacement; if the difference is very large, the transformation encodes an activity cliff. For a given compound activity class, MMPs comprehensively capture existing structural relationships and represent a spectrum of potency changes for structurally analogous compounds. We have aimed to predict potency changes encoded by MMPs. This prediction task principally differs from conventional quantitative structure-activity relationship (QSAR) analysis. For the prediction of MMP-associated potency changes, we introduce direction-dependent MMPs and combine MMP analysis with support vector regression (SVR) modeling. Combinations of newly designed kernel functions and fingerprint descriptors are explored. The resulting SVR models yield accurate predictions of MMP-encoded potency changes for many different data sets. Shared key structure context is found to contribute critically to prediction accuracy. SVR models reach higher performance than random forest (RF) and MMP-based averaging calculations carried out as controls. A comparison of SVR with kernel ridge regression indicates that prediction accuracy has largely been a consequence of kernel characteristics rather than SVR optimization details.
配对分子对(MMPs)由通过亚结构交换相互转化的化合物对组成。如果 MMPs 是由具有相同生物活性的化合物形成的,那么它们就编码了效力变化。如果 MMP 化合物之间的效力差异非常小,那么亚结构交换(化学转化)就编码了生物等排体替换;如果差异非常大,那么转化就编码了活性悬崖。对于给定的化合物活性类别,MMP 全面捕捉了现有的结构关系,并代表了结构类似化合物的效力变化谱。我们旨在预测 MMP 编码的效力变化。这项预测任务主要与传统的定量构效关系(QSAR)分析不同。对于 MMP 相关效力变化的预测,我们引入了有向 MMPs,并将 MMP 分析与支持向量回归(SVR)建模相结合。探索了新设计的核函数和指纹描述符的组合。结果 SVR 模型对许多不同的数据集进行了 MMP 编码效力变化的准确预测。发现共享的关键结构上下文对预测准确性至关重要。SVR 模型的性能优于随机森林(RF)和作为对照进行的基于 MMP 的平均计算。SVR 与核岭回归的比较表明,预测准确性主要是核特征的结果,而不是 SVR 优化细节的结果。