Suppr超能文献

使用替代终点预测成功率。

Predictive probability of success using surrogate endpoints.

机构信息

Dipartimento di Scienze Matematiche (DISMA) Giuseppe Luigi Lagrange, Politecnico di Torino, Turin, Italy.

Department of Biostatistics, Institut de Recherches Internationales Servier (IRIS), Suresnes, France.

出版信息

Stat Med. 2019 May 10;38(10):1753-1774. doi: 10.1002/sim.8060. Epub 2018 Dec 12.

Abstract

The predictive probability of success of a future clinical trial is a key quantitative tool for decision-making in drug development. It is derived from prior knowledge and available evidence, and the latter typically comes from the accumulated data on the clinical endpoint of interest in previous clinical trials. However, a surrogate endpoint could be used as primary endpoint in early development and, usually, no or limited data are collected on the clinical endpoint of interest. We propose a general, reliable, and broadly applicable methodology to predict the success of a future trial from surrogate endpoints, in a way that makes the best use of all the available evidence. The predictions are based on an informative prior, called surrogate prior, derived from the results of past trials on one or several surrogate endpoints. If available, in a Bayesian framework, this prior could be combined with data from past trials on the clinical endpoint of interest. Two methods are proposed to address a potential discordance between the surrogate prior and the data on the clinical endpoint. We investigate the patterns of behavior of the predictions in a comprehensive simulation study, and we present an application to the development of a drug in Multiple Sclerosis. The proposed methodology is expected to support decision-making in many different situations, since the use of predictive markers is important to accelerate drug developments and to select promising drug candidates, better and earlier.

摘要

未来临床试验成功的预测概率是药物开发决策的关键定量工具。它源自于先前的知识和现有证据,后者通常来自于先前临床试验中关于感兴趣的临床终点的累积数据。然而,替代终点可以用作早期开发的主要终点,并且通常没有或很少收集关于感兴趣的临床终点的数据。我们提出了一种通用、可靠且广泛适用的方法,用于从替代终点预测未来试验的成功,以便充分利用所有可用的证据。预测是基于一个信息性的先验,称为替代先验,它是从过去一个或多个替代终点的试验结果中得出的。如果有,在贝叶斯框架中,可以将该先验与关于感兴趣的临床终点的过去试验的数据相结合。我们提出了两种方法来解决替代先验与临床终点数据之间可能存在的不一致性。我们在一项全面的模拟研究中研究了预测的行为模式,并将其应用于多发性硬化症药物的开发。预期所提出的方法能够支持许多不同情况下的决策,因为预测标志物的使用对于加速药物开发和更早地选择有前途的候选药物非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验