Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA.
Department of Environmental and Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331; USA.
Toxicol Appl Pharmacol. 2019 Feb 1;364:55-67. doi: 10.1016/j.taap.2018.12.009. Epub 2018 Dec 12.
Alternative splicing modulates gene function by creating splice variants with alternate functions or non-coding RNA activity. Naturally occurring variants of nuclear receptor (NR) genes with dominant negative or gain-of-function phenotypes have been documented, but their cellular roles, regulation, and responsiveness to environmental stress or disease remain unevaluated. Informed by observations that class I androgen and estrogen receptor variants display ligand-independent signaling in human cancer tissues, we questioned whether the function of class II NRs, like the vitamin D receptor (VDR), would also respond to alternative splicing regulation. Artificial VDR constructs lacking exon 3 (Dex3-VDR), encoding part of the DNA binding domain (DBD), and exon 8 (Dex8-VDR), encoding part of the ligand binding domain (LBD), were transiently transfected into DU-145 cells and stably-integrated into Caco-2 cells to study their effect on gene expression and cell viability. Changes in VDR promoter signaling were monitored by the expression of target genes (e.g. CYP24A1, CYP3A4 and CYP3A5). Ligand-independent VDR signaling was observed in variants lacking exon 8, and a significant loss of gene suppressor function was documented for variants lacking exon 3. The gain-of-function behavior of the Dex8-VDR variant was recapitulated in vitro using antisense oligonucleotides (ASO) that induce the skipping of exon 8 in wild-type VDR. ASO targeting the splice acceptor site of exon 8 significantly stimulated ligand-independent VDR reporter activity and the induction of CYP24A1 above controls. These results demonstrate how alternative splicing can re-program NR gene function, highlighting novel mechanisms of toxicity and new opportunities for the use of splice-switching oligonucleotides (SSO) in precision medicine.
可变剪接通过产生具有不同功能或非编码 RNA 活性的剪接变体来调节基因功能。已经记录了具有显性负或获得性功能表型的核受体 (NR) 基因的天然变体,但它们的细胞作用、调节以及对环境应激或疾病的反应仍未得到评估。受观察到的类 I 雄激素和雌激素受体变体在人类癌组织中显示出配体非依赖性信号的启发,我们质疑类 II NR (如维生素 D 受体 (VDR) )的功能是否也会受到可变剪接调节的影响。缺乏外显子 3(编码 DNA 结合域(DBD)部分的 Dex3-VDR)和外显子 8(编码配体结合域(LBD)部分的 Dex8-VDR)的人工 VDR 构建体被瞬时转染到 DU-145 细胞中,并稳定整合到 Caco-2 细胞中,以研究它们对基因表达和细胞活力的影响。通过靶基因(例如 CYP24A1、CYP3A4 和 CYP3A5)的表达来监测 VDR 启动子信号的变化。在缺乏外显子 8 的变体中观察到配体非依赖性的 VDR 信号,并且记录到缺乏外显子 3 的变体的基因抑制功能显著丧失。使用诱导野生型 VDR 中外显子 8 跳跃的反义寡核苷酸 (ASO) 在体外再现了 Dex8-VDR 变体的获得性功能行为。靶向外显子 8 剪接受体位点的 ASO 显著刺激了配体非依赖性 VDR 报告基因活性,并使 CYP24A1 的诱导高于对照。这些结果表明可变剪接如何重新编程 NR 基因功能,突出了毒性的新机制,并为使用剪接转换寡核苷酸 (SSO) 在精准医学中提供了新的机会。