Suppr超能文献

HMCES 通过保护单链 DNA 中的无碱基位点来维持基因组完整性。

HMCES Maintains Genome Integrity by Shielding Abasic Sites in Single-Strand DNA.

机构信息

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.

出版信息

Cell. 2019 Jan 10;176(1-2):144-153.e13. doi: 10.1016/j.cell.2018.10.055. Epub 2018 Dec 13.

Abstract

Abasic sites are one of the most common DNA lesions. All known abasic site repair mechanisms operate only when the damage is in double-stranded DNA. Here, we report the discovery of 5-hydroxymethylcytosine (5hmC) binding, ESC-specific (HMCES) as a sensor of abasic sites in single-stranded DNA. HMCES acts at replication forks, binds PCNA and single-stranded DNA, and generates a DNA-protein crosslink to shield abasic sites from error-prone processing. This unusual HMCES DNA-protein crosslink intermediate is resolved by proteasome-mediated degradation. Acting as a suicide enzyme, HMCES prevents translesion DNA synthesis and the action of endonucleases that would otherwise generate mutations and double-strand breaks. HMCES is evolutionarily conserved in all domains of life, and its biochemical properties are shared with its E. coli ortholog. Thus, HMCES is an ancient DNA lesion recognition protein that preserves genome integrity by promoting error-free repair of abasic sites in single-stranded DNA.

摘要

堿基位点是最常见的 DNA 损伤之一。所有已知的堿基位点修复机制仅在双链 DNA 中发生损伤时才起作用。在这里,我们报告了发现 5-羟甲基胞嘧啶(5hmC)结合物、ESC 特异性(HMCES)作为单链 DNA 中堿基位点的传感器。HMCES 在复制叉处起作用,与 PCNA 和单链 DNA 结合,并形成 DNA-蛋白质交联,以防止堿基位点易出错的加工。这种不寻常的 HMCES DNA-蛋白质交联中间体通过蛋白酶体介导的降解来解决。作为自杀酶,HMCES 可防止跨损伤 DNA 合成和内切酶的作用,否则会导致突变和双链断裂。HMCES 在所有生命领域中都具有进化保守性,其生化特性与其大肠杆菌同源物共享。因此,HMCES 是一种古老的 DNA 损伤识别蛋白,通过促进单链 DNA 中堿基位点的无错误修复来保护基因组完整性。

相似文献

1
HMCES Maintains Genome Integrity by Shielding Abasic Sites in Single-Strand DNA.
Cell. 2019 Jan 10;176(1-2):144-153.e13. doi: 10.1016/j.cell.2018.10.055. Epub 2018 Dec 13.
3
Structural biology of DNA abasic site protection by SRAP proteins.
DNA Repair (Amst). 2020 Oct;94:102903. doi: 10.1016/j.dnarep.2020.102903. Epub 2020 Jun 29.
4
Protection of abasic sites during DNA replication by a stable thiazolidine protein-DNA cross-link.
Nat Struct Mol Biol. 2019 Jul;26(7):613-618. doi: 10.1038/s41594-019-0255-5. Epub 2019 Jun 24.
5
Self-reversal facilitates the resolution of HMCES DNA-protein crosslinks in cells.
Cell Rep. 2023 Nov 28;42(11):113427. doi: 10.1016/j.celrep.2023.113427. Epub 2023 Nov 11.
6
Structural basis of HMCES interactions with abasic DNA and multivalent substrate recognition.
Nat Struct Mol Biol. 2019 Jul;26(7):607-612. doi: 10.1038/s41594-019-0246-6. Epub 2019 Jun 24.
7
The HMCES DNA-protein cross-link functions as an intermediate in DNA interstrand cross-link repair.
Nat Struct Mol Biol. 2022 May;29(5):451-462. doi: 10.1038/s41594-022-00764-0. Epub 2022 May 9.
9
10
Crosslink and shield: protecting abasic sites from error-prone repair.
Nat Struct Mol Biol. 2019 Jul;26(7):530-532. doi: 10.1038/s41594-019-0264-4.

引用本文的文献

2
Chemical Switching: A Concept Inspired by Strategies from Biocatalysis and Organocatalysis.
Chembiochem. 2025 Jun 3;26(11):e202500220. doi: 10.1002/cbic.202500220. Epub 2025 May 26.
3
DNA-Protein Cross-Links Derived from Abasic DNA Lesions: Recent Progress and Future Directions.
Chem Res Toxicol. 2025 Jun 16;38(6):997-1005. doi: 10.1021/acs.chemrestox.5c00125. Epub 2025 May 19.
4
HMCES corrupts replication fork stability during base excision repair in homologous recombination-deficient cells.
Sci Adv. 2025 Mar 28;11(13):eads3227. doi: 10.1126/sciadv.ads3227. Epub 2025 Mar 26.
7
Contributing factors to the oxidation-induced mutational landscape in human cells.
Nat Commun. 2024 Dec 23;15(1):10722. doi: 10.1038/s41467-024-55497-z.
10
Catalytic and noncatalytic functions of DNA polymerase κ in translesion DNA synthesis.
Nat Struct Mol Biol. 2025 Feb;32(2):300-314. doi: 10.1038/s41594-024-01395-3. Epub 2024 Sep 19.

本文引用的文献

1
Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading.
Cell Rep. 2018 Jun 19;23(12):3419-3428. doi: 10.1016/j.celrep.2018.05.061.
2
RPA and RAD51: fork reversal, fork protection, and genome stability.
Nat Struct Mol Biol. 2018 Jun;25(6):446-453. doi: 10.1038/s41594-018-0075-z. Epub 2018 May 28.
3
Erasure of Tet-Oxidized 5-Methylcytosine by a SRAP Nuclease.
Cell Rep. 2017 Oct 10;21(2):482-494. doi: 10.1016/j.celrep.2017.09.055.
4
Mechanisms of DNA-protein crosslink repair.
Nat Rev Mol Cell Biol. 2017 Sep;18(9):563-573. doi: 10.1038/nrm.2017.56. Epub 2017 Jun 28.
5
Evolution of DNA Methylation across Insects.
Mol Biol Evol. 2017 Mar 1;34(3):654-665. doi: 10.1093/molbev/msw264.
6
The Replication Checkpoint Prevents Two Types of Fork Collapse without Regulating Replisome Stability.
Mol Cell. 2015 Sep 17;59(6):998-1010. doi: 10.1016/j.molcel.2015.07.030. Epub 2015 Sep 10.
7
Enzyme mechanism-based, oxidative DNA-protein cross-links formed with DNA polymerase β in vivo.
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8602-7. doi: 10.1073/pnas.1501101112. Epub 2015 Jun 29.
9
HISAT: a fast spliced aligner with low memory requirements.
Nat Methods. 2015 Apr;12(4):357-60. doi: 10.1038/nmeth.3317. Epub 2015 Mar 9.
10
Repair of a DNA-protein crosslink by replication-coupled proteolysis.
Cell. 2014 Oct 9;159(2):346-57. doi: 10.1016/j.cell.2014.09.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验