Cordero Cameron, Mehta Kavi P M, Weaver Tyler M, Ling Justin A, Freudenthal Bret D, Cortez David, Roberts Steven A
Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA.
Nat Commun. 2024 Dec 23;15(1):10722. doi: 10.1038/s41467-024-55497-z.
8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers. Potassium bromate (KBrO)-induced 8-oxoGs occur with similar sequence preferences as their derived substitutions, indicating that the reactivity of specific oxidants dictates mutation sequence specificity. While 8-oxoG occurs uniformly across chromatin, 8-oxoG-induced mutations are elevated in compact genomic regions, within nucleosomes, and at inward facing guanines within strongly positioned nucleosomes. Cryo-electron microscopy structures of OGG1-nucleosome complexes indicate that these effects originate from OGG1's ability to flip outward positioned 8-oxoG lesions into the catalytic pocket while inward facing lesions are occluded by the histone octamer. Mutation spectra from human cells with DNA repair deficiencies reveals contributions of a DNA repair network limiting 8-oxoG mutagenesis, where OGG1- and MUTYH-mediated base excision repair is supplemented by the replication-associated factors Pol η and HMCES. Transcriptional asymmetry of KBrO-induced mutations in OGG1- and Pol η-deficient cells also demonstrates transcription-coupled repair can prevent 8-oxoG-induced mutation. Thus, oxidant chemistry, chromatin structures, and DNA repair processes combine to dictate the oxidative mutational landscape in human genomes.
8-氧代鸟嘌呤(8-oxoG)是一种常见的氧化性DNA损伤,可导致G>T替换。目前尚不清楚全基因组中8-氧代鸟嘌呤诱导的突变性在局部和区域差异的决定因素。在这里,我们表明DNA氧化在人类细胞和癌症中诱导G>T替换以及插入/缺失(INDEL)突变。溴酸钾(KBrO)诱导的8-氧代鸟嘌呤与其衍生的替换具有相似的序列偏好,这表明特定氧化剂的反应性决定了突变序列特异性。虽然8-氧代鸟嘌呤在染色质中均匀分布,但8-氧代鸟嘌呤诱导的突变在紧密的基因组区域、核小体内部以及定位强烈的核小体中向内的鸟嘌呤处有所增加。OGG1-核小体复合物的冷冻电子显微镜结构表明,这些效应源于OGG1将向外定位的8-氧代鸟嘌呤损伤翻转到催化口袋中的能力,而向内的损伤则被组蛋白八聚体阻断。来自具有DNA修复缺陷的人类细胞的突变谱揭示了一个限制8-氧代鸟嘌呤诱变的DNA修复网络的作用,其中OGG1和MUTYH介导的碱基切除修复由复制相关因子Pol η和HMCES补充。OGG1和Pol η缺陷细胞中KBrO诱导突变的转录不对称性也表明转录偶联修复可以预防8-氧代鸟嘌呤诱导的突变。因此,氧化剂化学、染色质结构和DNA修复过程共同决定了人类基因组中的氧化突变格局。