Suppr超能文献

人类细胞中氧化诱导突变图谱的促成因素。

Contributing factors to the oxidation-induced mutational landscape in human cells.

作者信息

Cordero Cameron, Mehta Kavi P M, Weaver Tyler M, Ling Justin A, Freudenthal Bret D, Cortez David, Roberts Steven A

机构信息

Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.

University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA.

出版信息

Nat Commun. 2024 Dec 23;15(1):10722. doi: 10.1038/s41467-024-55497-z.

Abstract

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers. Potassium bromate (KBrO)-induced 8-oxoGs occur with similar sequence preferences as their derived substitutions, indicating that the reactivity of specific oxidants dictates mutation sequence specificity. While 8-oxoG occurs uniformly across chromatin, 8-oxoG-induced mutations are elevated in compact genomic regions, within nucleosomes, and at inward facing guanines within strongly positioned nucleosomes. Cryo-electron microscopy structures of OGG1-nucleosome complexes indicate that these effects originate from OGG1's ability to flip outward positioned 8-oxoG lesions into the catalytic pocket while inward facing lesions are occluded by the histone octamer. Mutation spectra from human cells with DNA repair deficiencies reveals contributions of a DNA repair network limiting 8-oxoG mutagenesis, where OGG1- and MUTYH-mediated base excision repair is supplemented by the replication-associated factors Pol η and HMCES. Transcriptional asymmetry of KBrO-induced mutations in OGG1- and Pol η-deficient cells also demonstrates transcription-coupled repair can prevent 8-oxoG-induced mutation. Thus, oxidant chemistry, chromatin structures, and DNA repair processes combine to dictate the oxidative mutational landscape in human genomes.

摘要

8-氧代鸟嘌呤(8-oxoG)是一种常见的氧化性DNA损伤,可导致G>T替换。目前尚不清楚全基因组中8-氧代鸟嘌呤诱导的突变性在局部和区域差异的决定因素。在这里,我们表明DNA氧化在人类细胞和癌症中诱导G>T替换以及插入/缺失(INDEL)突变。溴酸钾(KBrO)诱导的8-氧代鸟嘌呤与其衍生的替换具有相似的序列偏好,这表明特定氧化剂的反应性决定了突变序列特异性。虽然8-氧代鸟嘌呤在染色质中均匀分布,但8-氧代鸟嘌呤诱导的突变在紧密的基因组区域、核小体内部以及定位强烈的核小体中向内的鸟嘌呤处有所增加。OGG1-核小体复合物的冷冻电子显微镜结构表明,这些效应源于OGG1将向外定位的8-氧代鸟嘌呤损伤翻转到催化口袋中的能力,而向内的损伤则被组蛋白八聚体阻断。来自具有DNA修复缺陷的人类细胞的突变谱揭示了一个限制8-氧代鸟嘌呤诱变的DNA修复网络的作用,其中OGG1和MUTYH介导的碱基切除修复由复制相关因子Pol η和HMCES补充。OGG1和Pol η缺陷细胞中KBrO诱导突变的转录不对称性也表明转录偶联修复可以预防8-氧代鸟嘌呤诱导的突变。因此,氧化剂化学、染色质结构和DNA修复过程共同决定了人类基因组中的氧化突变格局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdf6/11666792/46b948ebac91/41467_2024_55497_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验