Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan.
Department of Medical Sciences, University of Miyazaki, Miyazaki, Japan.
Curr Med Chem. 2020;27(21):3499-3518. doi: 10.2174/0929867326666181217142715.
In mammals, catabolism of the heme group is indispensable for life. Heme is first cleaved by the enzyme Heme Oxygenase (HO) to the linear tetrapyrrole Biliverdin IXα (BV), and BV is then converted into bilirubin by Biliverdin Reductase (BVR). HO utilizes three Oxygen molecules (O2) and seven electrons supplied by NADPH-cytochrome P450 oxidoreductase (CPR) to open the heme ring and BVR reduces BV through the use of NAD(P)H. Structural studies of HOs, including substrate-bound, reaction intermediate-bound, and several specific inhibitor-bound forms, reveal details explaining substrate binding to HO and mechanisms underlying-specific HO reaction progression. Cryo-trapped structures and a time-resolved spectroscopic study examining photolysis of the bond between the distal ligand and heme iron demonstrate how CO, produced during the HO reaction, dissociates from the reaction site with a corresponding conformational change in HO. The complex structure containing HO and CPR provides details of how electrons are transferred to the heme-HO complex. Although the tertiary structure of BVR and its complex with NAD+ was determined more than 10 years ago, the catalytic residues and the reaction mechanism of BVR remain unknown. A recent crystallographic study examining cyanobacterial BVR in complex with NADP+ and substrate BV provided some clarification regarding these issues. Two BV molecules are bound to BVR in a stacked manner, and one BV may assist in the reductive catalysis of the other BV. In this review, recent advances illustrated by biochemical, spectroscopic, and crystallographic studies detailing the chemistry underlying the molecular mechanism of HO and BVR reactions are presented.
在哺乳动物中,血红素基团的分解代谢对生命是必不可少的。血红素首先被酶血红素加氧酶(HO)切割成线性四吡咯胆绿素 IXα(BV),然后胆绿素由胆红素还原酶(BVR)转化为胆红素。HO 利用三个氧分子(O2)和 NADPH-细胞色素 P450 氧化还原酶(CPR)提供的七个电子打开血红素环,BVR 通过使用 NAD(P)H 还原 BV。HO 的结构研究,包括与底物结合、反应中间体结合和几种特定抑制剂结合的形式,揭示了解释底物与 HO 结合的细节和特定 HO 反应进展的机制。低温捕获结构和对考察与血红素铁结合的远端配体之间的键的光解的时间分辨光谱研究表明,HO 反应过程中产生的 CO 如何与 HO 发生构象变化而从反应位点解离。包含 HO 和 CPR 的复合物结构提供了关于电子如何转移到血红素-HO 复合物的细节。尽管 BVR 及其与 NAD+复合物的三级结构在 10 多年前就已确定,但 BVR 的催化残基和反应机制仍不清楚。最近一项关于与 NADP+和底物 BV 结合的蓝细菌 BVR 的晶体学研究为这些问题提供了一些澄清。两个 BV 分子以堆叠的方式结合到 BVR 上,一个 BV 可能有助于另一个 BV 的还原催化。在这篇综述中,介绍了最近的生化、光谱和晶体学研究进展,这些研究详细说明了 HO 和 BVR 反应的分子机制的化学基础。