Spencer Andrea L M, Bagai Ireena, Becker Donald F, Zuiderweg Erik R P, Ragsdale Stephen W
From the Cellular and Molecular Biology Training Program and.
Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48103 and.
J Biol Chem. 2014 Oct 24;289(43):29836-58. doi: 10.1074/jbc.M114.582783. Epub 2014 Sep 7.
Heme oxygenase (HO) catalyzes the rate-limiting step in the O2-dependent degradation of heme to biliverdin, CO, and iron with electrons delivered from NADPH via cytochrome P450 reductase (CPR). Biliverdin reductase (BVR) then catalyzes conversion of biliverdin to bilirubin. We describe mutagenesis combined with kinetic, spectroscopic (fluorescence and NMR), surface plasmon resonance, cross-linking, gel filtration, and analytical ultracentrifugation studies aimed at evaluating interactions of HO-2 with CPR and BVR. Based on these results, we propose a model in which HO-2 and CPR form a dynamic ensemble of complex(es) that precede formation of the productive electron transfer complex. The (1)H-(15)N TROSY NMR spectrum of HO-2 reveals specific residues, including Leu-201, near the heme face of HO-2 that are affected by the addition of CPR, implicating these residues at the HO/CPR interface. Alanine substitutions at HO-2 residues Leu-201 and Lys-169 cause a respective 3- and 22-fold increase in K(m) values for CPR, consistent with a role for these residues in CPR binding. Sedimentation velocity experiments confirm the transient nature of the HO-2 · CPR complex (K(d) = 15.1 μM). Our results also indicate that HO-2 and BVR form a very weak complex that is only captured by cross-linking. For example, under conditions where CPR affects the (1)H-(15)N TROSY NMR spectrum of HO-2, BVR has no effect. Fluorescence quenching experiments also suggest that BVR binds HO-2 weakly, if at all, and that the previously reported high affinity of BVR for HO is artifactual, resulting from the effects of free heme (dissociated from HO) on BVR fluorescence.
血红素加氧酶(HO)催化血红素在氧气依赖下分解为胆绿素、一氧化碳和铁的限速步骤,电子通过细胞色素P450还原酶(CPR)从NADPH传递。然后胆绿素还原酶(BVR)催化胆绿素转化为胆红素。我们描述了结合动力学、光谱学(荧光和核磁共振)、表面等离子体共振、交联、凝胶过滤和分析超速离心研究的诱变方法,旨在评估HO-2与CPR和BVR的相互作用。基于这些结果,我们提出了一个模型,其中HO-2和CPR形成了一个动态的复合物集合体,该集合体先于生产性电子转移复合物的形成。HO-2的(1)H-(15)N TROSY核磁共振谱揭示了HO-2血红素表面附近的特定残基,包括Leu-201,这些残基受到CPR添加的影响,表明这些残基位于HO/CPR界面。HO-2残基Leu-201和Lys-169处的丙氨酸取代分别导致CPR的K(m)值增加3倍和22倍,这与这些残基在CPR结合中的作用一致。沉降速度实验证实了HO-2·CPR复合物的瞬态性质(K(d)=15.1μM)。我们的结果还表明,HO-2和BVR形成了一个非常弱的复合物,仅通过交联捕获。例如,在CPR影响HO-2的(1)H-(15)N TROSY核磁共振谱的条件下,BVR没有影响。荧光猝灭实验还表明,BVR与HO-2的结合很弱,如果有的话,并且先前报道的BVR对HO的高亲和力是人为造成的,是由于游离血红素(从HO解离)对BVR荧光的影响。