Lapidus Saul H, Graham Adora G, Kareis Christopher M, Hawkins Casey G, Stephens Peter W, Miller Joel S
Department of Physics & Astronomy , State University of New York , Stony Brook , New York 11794-3800 , United States.
Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States.
J Am Chem Soc. 2019 Jan 16;141(2):911-921. doi: 10.1021/jacs.8b10638. Epub 2019 Jan 4.
The size of the organic cation dictates both the composition and the extended 3-D structure for hybrid organic/inorganic Prussian blue analogues (PBAs) of A Mn (CN) (A = cation) stoichiometry. Alkali PBAs are typically cubic with both MC and M'N octahedral coordination sites and the alkali cation content depends on the M and M' oxidation states. The reaction of Mn(OCCH) and ACN (A = NMe, NEtMe) forms a hydrated material of AMn(CN) composition. AMn(CN) forms a complex, 3-D extended structural motif with octahedral and rarely observed square pyramidal and trigonal bipyramidal Mn sites with a single layer motif of three pentagonal and one triangular fused rings. A complex pattern of MnCN chains bridge the layers. (NMe)Mn(CN) possesses one low-spin octahedral and four high-spin pentacoordinate Mn sites and orders as an antiferromagnet at 11 K due to the layers being bridged and antiferromagnetically coupled by the nonmagnetic cyanides. These are rare examples of intrinsic, chemically prepared and controlled artificial antiferromagnets and have the advantage of having controlled uniform spacing between the layers as they are not physically prepared via deposition methods. AMn(CN) (A = NMe, NEtMe) along with [NEt]Mn(CN), [NEt]Mn(CN), and Mn(CN) form stoichiometrically related A Mn (CN) ( a = 0, b = 1; a = 2, b = 3; a = 1, b = 3; and a = 3, b = 5) series possessing unprecedented stoichiometries and lattice motifs. These unusual structures and stoichiometries are attributed to the very ionic nature of the high-spin N-bonded Mn ion that enables the maximization of the attractive van der Waals interactions via minimization of void space via a reduced ∠MnNC. This A Mn (CN) family of compounds are referred to as being cation adaptive in which size and shape dictate both the stoichiometry and structure.
有机阳离子的大小决定了化学计量比为A Mn(CN) (A = 阳离子)的有机/无机杂化普鲁士蓝类似物(PBAs)的组成和扩展的三维结构。碱金属PBAs通常为立方结构,同时具有M-C和M'-N八面体配位位点,且碱金属阳离子含量取决于M和M'的氧化态。Mn(OCCH) 与ACN(A = NMe、NEtMe)反应形成化学计量比为AMn(CN) 的水合材料。AMn(CN) 形成一种复杂的三维扩展结构 motif,具有八面体以及罕见的方形金字塔形和三角双锥形Mn位点,带有由三个五边形和一个三角形稠合环组成的单层motif。一种复杂的Mn-CN链模式连接各层。(NMe)Mn(CN) 具有一个低自旋八面体和四个高自旋五配位Mn位点,并在11 K时表现为反铁磁体,这是因为各层通过非磁性氰化物桥连并反铁磁耦合。这些是本征的、化学制备和可控的人工反铁磁体的罕见例子,并且具有各层之间间距可控且均匀的优点,因为它们不是通过沉积方法物理制备的。AMn(CN) (A = NMe、NEtMe)与[NEt]Mn(CN)、[NEt]Mn(CN) 和Mn(CN) 形成化学计量比相关的A Mn(CN) (a = 0,b = 1;a = 2,b = 3;a = 1,b = 3;以及a = 3,b = 5)系列,具有前所未有的化学计量比和晶格motif。这些不寻常的结构和化学计量比归因于高自旋N键合Mn离子的非常离子性的性质,这使得通过减小∠MnNC来最小化空隙空间从而最大化有吸引力的范德华相互作用成为可能。这个A Mn(CN) 化合物家族被称为阳离子适应性的,其中大小和形状决定了化学计量比和结构。