Suppr超能文献

用于生物传感的异二聚体等离子体纳米间隙

Heterodimeric Plasmonic Nanogaps for Biosensing.

作者信息

Chatterjee Sharmistha, Ricciardi Loredana, Deitz Julia I, Williams Robert E A, McComb David W, Strangi Giuseppe

机构信息

Department of Physics, Case Western Reserve University, 10600 Euclid Avenue, Cleveland, OH 44106, USA.

CNR-NANOTEC Istituto di Nanotecnologia and Department of Physics, University of Calabria, 87036 Rende, Italy.

出版信息

Micromachines (Basel). 2018 Dec 16;9(12):664. doi: 10.3390/mi9120664.

Abstract

We report the study of heterodimeric plasmonic nanogaps created between gold nanostar (AuNS) tips and gold nanospheres. The selective binding is realized by properly functionalizing the two nanostructures; in particular, the hot electrons injected at the nanostar tips trigger a regio-specific chemical link with the functionalized nanospheres. AuNSs were synthesized in a simple, one-step, surfactant-free, high-yield wet-chemistry method. The high aspect ratio of the sharp nanostar tip collects and concentrates intense electromagnetic fields in ultrasmall surfaces with small curvature radius. The extremities of these surface tips become plasmonic hot spots, allowing significant intensity enhancement of local fields and hot-electron injection. Electron energy-loss spectroscopy (EELS) was performed to spatially map local plasmonic modes of the nanostar. The presence of different kinds of modes at different position of these nanostars makes them one of the most efficient, unique, and smart plasmonic antennas. These modes are harnessed to mediate the formation of heterodimers (nanostar-nanosphere) through hot-electron-induced chemical modification of the tip. For an AuNS-nanosphere heterodimeric gap, the intensity enhancement factor in the hot-spot region was determined to be 10⁶, which is an order of magnitude greater than the single nanostar tip. The intense local electric field within the nanogap results in ultra-high sensitivity for the presence of bioanalytes captured in that region. In case of a single BSA molecule (66.5 KDa), the sensitivity was evaluated to be about 1940 nm/RIU for a single AuNS, but was 5800 nm/RIU for the AuNS-nanosphere heterodimer. This indicates that this heterodimeric nanostructure can be used as an ultrasensitive plasmonic biosensor to detect single protein molecules or nucleic acid fragments of lower molecular weight with high specificity.

摘要

我们报告了关于在金纳米星(AuNS)尖端与金纳米球之间形成的异二聚体等离子体纳米间隙的研究。通过对两种纳米结构进行适当的功能化来实现选择性结合;特别是,在纳米星尖端注入的热电子引发了与功能化纳米球的区域特异性化学连接。AuNS通过一种简单的、一步法、无表面活性剂、高产率的湿化学方法合成。尖锐纳米星尖端的高纵横比在具有小曲率半径的超小表面上收集并集中了强烈的电磁场。这些表面尖端的末端成为等离子体热点,使得局部场的强度显著增强并实现热电子注入。进行了电子能量损失谱(EELS)以在空间上绘制纳米星的局部等离子体模式。这些纳米星在不同位置存在不同种类的模式,使其成为最有效、独特且智能的等离子体天线之一。利用这些模式通过热电子诱导的尖端化学修饰来介导异二聚体(纳米星 - 纳米球)的形成。对于AuNS - 纳米球异二聚体间隙,热点区域的强度增强因子被确定为10⁶,比单个纳米星尖端大一个数量级。纳米间隙内强烈的局部电场导致对捕获在该区域的生物分析物的存在具有超高灵敏度。对于单个牛血清白蛋白(BSA)分子(66.5 kDa),单个AuNS的灵敏度评估为约1940 nm/RIU,但AuNS - 纳米球异二聚体的灵敏度为5800 nm/RIU。这表明这种异二聚体纳米结构可作为一种超灵敏的等离子体生物传感器,以高特异性检测单个蛋白质分子或低分子量的核酸片段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb6f/6316515/8ebf7f46af6c/micromachines-09-00664-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验