Suppr超能文献

基于双曲线超材料的极端灵敏度生物传感平台。

Extreme sensitivity biosensing platform based on hyperbolic metamaterials.

作者信息

Sreekanth Kandammathe Valiyaveedu, Alapan Yunus, ElKabbash Mohamed, Ilker Efe, Hinczewski Michael, Gurkan Umut A, De Luca Antonio, Strangi Giuseppe

机构信息

Department of Physics, Case Western Reserve University, 10600 Euclid Avenue, Cleveland, Ohio 44106, USA.

Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, Ohio 44106, USA.

出版信息

Nat Mater. 2016 Jun;15(6):621-7. doi: 10.1038/nmat4609. Epub 2016 Mar 28.

Abstract

Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.

摘要

光学传感器技术在医学研究和临床诊断领域提供了重大机遇,特别是用于检测高稀释溶液中的少量分子。为此已经开发了几种方法,包括基于超材料的无标记等离子体生物传感器。然而,由于低分子量(<500Da)生物分子的极化率较低,在高稀释溶液中检测它们仍然是一个具有挑战性的问题。在这种情况下,我们开发了一种基于双曲线超材料的小型化等离子体生物传感器平台,该平台可以在从可见光到近红外的宽波长范围内支持高度受限的体等离子体导模。通过使用光栅耦合技术激发这些模式,我们实现了不同的极端灵敏度模式,最大灵敏度为每折射率单位(RIU)30,000nm,品质因数(FOM)达到了创纪录的590。我们报告了该超材料平台使用标准亲和模型链霉亲和素 - 生物素在皮摩尔浓度下检测超低分子量(244Da)生物分子的能力。

相似文献

1
Extreme sensitivity biosensing platform based on hyperbolic metamaterials.
Nat Mater. 2016 Jun;15(6):621-7. doi: 10.1038/nmat4609. Epub 2016 Mar 28.
2
Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
Biosens Bioelectron. 2018 May 1;104:102-112. doi: 10.1016/j.bios.2017.12.001. Epub 2017 Dec 9.
3
Enhancing the Angular Sensitivity of Plasmonic Sensors Using Hyperbolic Metamaterials.
Adv Opt Mater. 2016 Nov;4(11):1767-1772. doi: 10.1002/adom.201600448. Epub 2016 Aug 2.
4
Plasmonic nanorod metamaterials for biosensing.
Nat Mater. 2009 Nov;8(11):867-71. doi: 10.1038/nmat2546. Epub 2009 Oct 11.
5
Composite metamaterial of hyperbolic nanoridges and gold nanoparticles for biosensing.
Nanoscale. 2025 Mar 24;17(12):7271-7280. doi: 10.1039/d4nr05517a.
6
A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index.
Biosens Bioelectron. 2010 Jan 15;25(5):1212-6. doi: 10.1016/j.bios.2009.09.011. Epub 2009 Sep 18.
7
E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing.
Sensors (Basel). 2010;10(10):9397-406. doi: 10.3390/s101009397. Epub 2010 Oct 20.
8
Highly Sensitive Plasmonic Waveguide Biosensor Based on Phase Singularity-Enhanced Goos-Hänchen Shift.
Biosensors (Basel). 2022 Jun 26;12(7):457. doi: 10.3390/bios12070457.
9
Graphene based hyperbolic metamaterial for tunable mid-infrared biosensing.
RSC Adv. 2021 Feb 17;11(14):7938-7945. doi: 10.1039/d0ra09781k.
10
Label-free surface plasmon resonance biosensing with titanium nitride thin film.
Biosens Bioelectron. 2018 May 30;106:129-135. doi: 10.1016/j.bios.2018.02.006. Epub 2018 Feb 3.

引用本文的文献

1
Recent Advances in Metasurfaces: From THz Biosensing to Microwave Wireless Communications.
Research (Wash D C). 2025 Aug 29;8:0820. doi: 10.34133/research.0820. eCollection 2025.
2
Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques.
Biosensors (Basel). 2025 Jun 20;15(7):401. doi: 10.3390/bios15070401.
3
The influence of shot noise on the performance of phase singularity-based refractometric sensors.
Nanophotonics. 2025 Jun 19;14(14):2463-2472. doi: 10.1515/nanoph-2025-0101. eCollection 2025 Jul.
4
Plasmonic Coupling for High-Sensitivity Detection of Low Molecular Weight Molecules.
Small Sci. 2024 Oct 9;5(1):2400382. doi: 10.1002/smsc.202400382. eCollection 2025 Jan.
5
Leaky Coupled Waveguide-Plasmon Modes for Enhanced Light-Matter Interaction.
Sensors (Basel). 2025 Mar 2;25(5):1550. doi: 10.3390/s25051550.
6
Flexible Multilayer Plasmonic Films for Biosensing and Photoemitting Applications.
ACS Omega. 2025 Feb 11;10(7):6586-6592. doi: 10.1021/acsomega.4c07333. eCollection 2025 Feb 25.
7
Ultra-compact quintuple-band terahertz metamaterial biosensor for enhanced blood cancer diagnostics.
PLoS One. 2025 Jan 9;20(1):e0313874. doi: 10.1371/journal.pone.0313874. eCollection 2025.
8
Probing Temperature Changes Using Nonradiative Processes in Hyperbolic Meta-Antennas.
ACS Appl Opt Mater. 2024 May 15;2(12):2469-2475. doi: 10.1021/acsaom.4c00098. eCollection 2024 Dec 27.
9
Asymmetric tetramer metasurface sensor governed by quasi-bound states in the continuum.
Nanophotonics. 2023 Mar 6;12(7):1295-1307. doi: 10.1515/nanoph-2023-0003. eCollection 2023 Apr.
10
Recent advances in ultrafast plasmonics: from strong field physics to ultraprecision spectroscopy.
Nanophotonics. 2022 Mar 21;11(11):2393-2431. doi: 10.1515/nanoph-2021-0694. eCollection 2022 Jun.

本文引用的文献

1
Graphene-Gold Metasurface Architectures for Ultrasensitive Plasmonic Biosensing.
Adv Mater. 2015 Oct 28;27(40):6163-9. doi: 10.1002/adma.201501754. Epub 2015 Sep 9.
2
APPLIED PHYSICS. Mid-infrared plasmonic biosensing with graphene.
Science. 2015 Jul 10;349(6244):165-8. doi: 10.1126/science.aab2051.
4
Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor.
Nat Biotechnol. 2014 May;32(5):490-5. doi: 10.1038/nbt.2886. Epub 2014 Apr 20.
5
LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum.
Nano Lett. 2014 May 14;14(5):2636-41. doi: 10.1021/nl500574n. Epub 2014 Apr 17.
6
Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications.
Chem Soc Rev. 2014 May 21;43(10):3426-52. doi: 10.1039/c3cs60479a. Epub 2014 Feb 18.
10
Metamaterials-based label-free nanosensor for conformation and affinity biosensing.
ACS Nano. 2013 Sep 24;7(9):7583-91. doi: 10.1021/nn401645t. Epub 2013 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验