Suppr超能文献

相似文献

1
Using Topic Modeling to Develop Multi-level Descriptions of Naturalistic Driving Data from Drivers with and without Sleep Apnea.
Transp Res Part F Traffic Psychol Behav. 2018 Oct;58:25-38. doi: 10.1016/j.trf.2018.05.019. Epub 2018 Jun 9.
2
Variations on a theme: Topic modeling of naturalistic driving data.
Proc Hum Factors Ergon Soc Annu Meet. 2014 Sep;58(1):2107-2111. doi: 10.1177/1541931214581443.
3
DRIVING PERFORMANCE AND DRIVER STATE IN OBSTRUCTIVE SLEEP APNEA: WHAT CHANGES WITH POSITIVE AIRWAY PRESSURE?
Proc Int Driv Symp Hum Factors Driv Assess Train Veh Des. 2017;2017:9-15. doi: 10.17077/drivingassessment.1608.
4
Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.
Traffic Inj Prev. 2015;16 Suppl 2:S176-81. doi: 10.1080/15389588.2015.1057281.
5
Use of multilevel modeling to examine variability of distracted driving behavior in naturalistic driving studies.
Accid Anal Prev. 2021 Mar;152:105986. doi: 10.1016/j.aap.2021.105986. Epub 2021 Jan 28.
6
Effects of Actigraphically Acquired Sleep Quality on Driving Outcomes in Obstructive Sleep Apnea Patients and Control Drivers: A Naturalistic Study.
Appl Hum Factors Ergon Conf. 2018;597:242-250. doi: 10.1007/978-3-319-60441-1_24. Epub 2017 Jun 24.
7
Creation of the Naturalistic Engagement in Secondary Tasks (NEST) distracted driving dataset.
J Safety Res. 2015 Sep;54:33-6. doi: 10.1016/j.jsr.2015.07.001. Epub 2015 Jul 26.
9
Older driver distraction: a naturalistic study of behaviour at intersections.
Accid Anal Prev. 2013 Sep;58:271-8. doi: 10.1016/j.aap.2012.12.027. Epub 2013 Jan 18.

本文引用的文献

1
Using kinematic driving data to detect sleep apnea treatment adherence.
J Intell Transp Syst. 2017;21(5):422-434. doi: 10.1080/15472450.2017.1369060. Epub 2017 Sep 13.
2
A contextual and temporal algorithm for driver drowsiness detection.
Accid Anal Prev. 2018 Apr;113:25-37. doi: 10.1016/j.aap.2018.01.005. Epub 2018 Feb 2.
3
Using event-triggered naturalistic data to examine the prevalence of teen driver distractions in rear-end crashes.
J Safety Res. 2016 Jun;57:47-52. doi: 10.1016/j.jsr.2016.03.010. Epub 2016 Apr 7.
4
Driver crash risk factors and prevalence evaluation using naturalistic driving data.
Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2636-41. doi: 10.1073/pnas.1513271113. Epub 2016 Feb 22.
5
EFFECTS OF FATIGUE ON REAL-WORLD DRIVING IN DISEASED AND CONTROL PARTICIPANTS.
Proc Int Driv Symp Hum Factors Driv Assess Train Veh Des. 2015 Jun;2015:268-274. doi: 10.17077/drivingassessment.1582.
7
Identifying risky drivers with simulated driving.
Traffic Inj Prev. 2016;17(1):44-50. doi: 10.1080/15389588.2015.1033056. Epub 2015 Apr 2.
8
Steering in a random forest: ensemble learning for detecting drowsiness-related lane departures.
Hum Factors. 2014 Aug;56(5):986-98. doi: 10.1177/0018720813515272.
9
A bag-of-features framework to classify time series.
IEEE Trans Pattern Anal Mach Intell. 2013 Nov;35(11):2796-802. doi: 10.1109/TPAMI.2013.72.
10
Defining and screening crash surrogate events using naturalistic driving data.
Accid Anal Prev. 2013 Dec;61:10-22. doi: 10.1016/j.aap.2012.10.004. Epub 2012 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验