Suppr超能文献

脑葡萄糖代谢:能量与功能的整合。

Brain Glucose Metabolism: Integration of Energetics with Function.

机构信息

Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico.

出版信息

Physiol Rev. 2019 Jan 1;99(1):949-1045. doi: 10.1152/physrev.00062.2017.

Abstract

Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.

摘要

葡萄糖是大脑长期以来必需的燃料,它能完成许多关键功能,包括三磷酸腺苷(ATP)的生成、氧化应激的管理以及神经递质、神经调质和结构成分的合成。神经元的葡萄糖氧化作用超过了星形胶质细胞,但两者的速率都与兴奋性神经递质的传递成正比增加;信号转导和代谢在局部水平紧密耦合。神经元-星形胶质细胞谷氨酸-谷氨酰胺循环的确切细节仍有待确定,葡萄糖和乳酸在这些过程中的细胞能量学中的具体作用仍存在争议。即使氧气供应充足(有氧糖酵解),大脑激活时也会优先上调糖酵解。三种主要途径,即糖酵解、磷酸戊糖途径和糖原周转,有助于利用超过氧气的葡萄糖,肾上腺素能调节有氧糖酵解引起人们对星形胶质细胞代谢的关注,特别是糖原周转,它对氧-碳水化合物不匹配有很大影响。有氧糖酵解被认为在幼儿和特定脑区中占主导地位,但需要重新评估数据。在激活、神经传递和记忆巩固期间,来自星形胶质细胞的葡萄糖和糖原衍生的乳酸向神经元的穿梭是有争议的话题,为此提出了替代机制。营养治疗和迷走神经刺激是从代谢到各种脑疾病的临床治疗的转化桥梁。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验