Suppr超能文献

一种用于临床动脉自旋标记图像的视觉质量控制量表。

A visual quality control scale for clinical arterial spin labeling images.

作者信息

Fallatah S M, Pizzini F B, Gomez-Anson B, Magerkurth J, De Vita E, Bisdas S, Jäger H R, Mutsaerts H J M M, Golay X

机构信息

Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.

The National Hospital for Neurology and Neurosurgery, London, UK.

出版信息

Eur Radiol Exp. 2018 Dec 19;2(1):45. doi: 10.1186/s41747-018-0073-2.

Abstract

BACKGROUND

Image-quality assessment is a fundamental step before clinical evaluation of magnetic resonance images. The aim of this study was to introduce a visual scoring system that provides a quality control standard for arterial spin labeling (ASL) and that can be applied to cerebral blood flow (CBF) maps, as well as to ancillary ASL images.

METHODS

The proposed image quality control (QC) system had two components: (1) contrast-based QC (cQC), describing the visual contrast between anatomical structures; and (2) artifact-based QC (aQC), evaluating image quality of the CBF map for the presence of common types of artifacts. Three raters evaluated cQC and aQC for 158 quantitative signal targeting with alternating radiofrequency labelling of arterial regions (QUASAR) ASL scans (CBF, T1 relaxation rate, arterial blood volume, and arterial transient time). Spearman correlation coefficient (r), intraclass correlation coefficients (ICC), and receiver operating characteristic analysis were used.

RESULTS

Intra/inter-rater agreement ranged from moderate to excellent; inter-rater ICC was 0.72 for cQC, 0.60 for aQC, and 0.74 for the combined QC (cQC + aQC). Intra-rater ICC was 0.90 for cQC; 0.80 for aQC, and 0.90 for the combined QC. Strong correlations were found between aQC and CBF maps quality (r = 0.75), and between aQC and cQC (r = 0.70). A QC score of 18 was optimal to discriminate between high and low quality clinical scans.

CONCLUSIONS

The proposed QC system provided high reproducibility and a reliable threshold for discarding low quality scans. Future research should compare this visual QC system with an automatic QC system.

摘要

背景

图像质量评估是磁共振图像临床评估前的一个基本步骤。本研究的目的是引入一种视觉评分系统,该系统可为动脉自旋标记(ASL)提供质量控制标准,并可应用于脑血流量(CBF)图以及辅助ASL图像。

方法

所提出的图像质量控制(QC)系统有两个组成部分:(1)基于对比度的QC(cQC),描述解剖结构之间的视觉对比度;(2)基于伪影的QC(aQC),评估CBF图中常见伪影类型的图像质量。三名评估者对158次动脉区域交替射频标记定量信号靶向(QUASAR)ASL扫描(CBF、T1弛豫率、动脉血容量和动脉过渡时间)的cQC和aQC进行了评估。使用了斯皮尔曼相关系数(r)、组内相关系数(ICC)和受试者操作特征分析。

结果

评估者间/评估者内一致性从中度到优秀不等;评估者间ICC对于cQC为0.72,对于aQC为0.60,对于联合QC(cQC+aQC)为0.74。评估者内ICC对于cQC为0.90;对于aQC为0.80,对于联合QC为0.90。在aQC与CBF图质量之间(r=0.75)以及aQC与cQC之间(r=0.70)发现了强相关性。QC评分为18最适合区分高质量和低质量的临床扫描。

结论

所提出的QC系统具有高再现性和用于舍弃低质量扫描的可靠阈值。未来的研究应将这种视觉QC系统与自动QC系统进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/862d/6300452/779ac79d005a/41747_2018_73_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验