Department of Biomedical Engineering, The Ohio State University , Columbus, Ohio.
The Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.
Am J Physiol Heart Circ Physiol. 2019 Mar 1;316(3):H596-H608. doi: 10.1152/ajpheart.00095.2018. Epub 2018 Dec 21.
Hemodynamic load regulates cardiac remodeling. In contrast to pressure overload (increased afterload), hearts subjected to volume overload (VO; preload) undergo a distinct pattern of eccentric remodeling, chamber dilation, and decreased extracellular matrix content. Critical profibrotic roles of cardiac fibroblasts (CFs) in postinfarct remodeling and in response to pressure overload have been well established. Little is known about the CF phenotype in response to VO. The present study characterized the phenotype of primary cultures of CFs isolated from hearts subjected to 4 wk of VO induced by an aortocaval fistula. Compared with CFs isolated from sham hearts, VO CFs displayed a "hypofibrotic" phenotype, characterized by a ~50% decrease in the profibrotic phenotypic markers α-smooth muscle actin, connective tissue growth factor, and collagen type I, despite increased levels of profibrotic transforming growth factor-β and an intact canonical transforming growth factor-β signaling pathway. Actin filament dynamics were characterized, which regulate the CF phenotype in response to biomechanical signals. Actin polymerization was determined by the relative amounts of G-actin monomers versus F-actin. Compared with sham CFs, VO CFs displayed ~78% less F-actin and an increased G-actin-to-F-actin ratio (G/F ratio). In sham CFs, treatment with the Rho kinase inhibitor Y-27632 to increase the G/F ratio resulted in recapitulation of the hypofibrotic CF phenotype observed in VO CFs. Conversely, treatment of VO CFs with jasplakinolide to decrease the G/F ratio restored a more profibrotic response (>2.5-fold increase in α-smooth muscle actin, connective tissue growth factor, and collagen type I). NEW & NOTEWORTHY The present study is the first to describe a "hypofibrotic" phenotype of cardiac fibroblasts isolated from a volume overload model. Our results suggest that biomechanical regulation of actin microfilament stability and assembly is a critical mediator of cardiac fibroblast phenotypic modulation.
血流动力负荷调节心脏重构。与压力超负荷(后负荷增加)不同,承受容量超负荷(VO;前负荷)的心脏经历明显的偏心性重构、心室扩张和细胞外基质含量降低。心脏成纤维细胞(CFs)在心肌梗死后重构和对压力超负荷的反应中的关键致纤维化作用已得到充分证实。关于 CF 对 VO 的反应的表型知之甚少。本研究对通过腹主动脉-腔静脉瘘诱导 4 周 VO 后从心脏分离的原代 CF 培养物的表型进行了特征描述。与从 sham 心脏分离的 CF 相比,VO CF 表现出“低纤维化”表型,特征为促纤维化表型标志物α-平滑肌肌动蛋白、结缔组织生长因子和 I 型胶原的表达降低约 50%,尽管转化生长因子-β水平升高且完整的经典转化生长因子-β信号通路。特征化了调节 CF 对生物力学信号反应的肌动蛋白丝动力学。肌动蛋白聚合通过 G-肌动蛋白单体与 F-肌动蛋白的相对量来确定。与 sham CF 相比,VO CF 显示约 78%更少的 F-肌动蛋白和增加的 G-肌动蛋白/F-肌动蛋白比值(G/F 比值)。在 sham CF 中,用 Rho 激酶抑制剂 Y-27632 处理以增加 G/F 比值导致重现了在 VO CF 中观察到的低纤维化 CF 表型。相反,用 jasplakinolide 处理 VO CF 以降低 G/F 比值恢复了更具促纤维化的反应(α-平滑肌肌动蛋白、结缔组织生长因子和 I 型胶原的增加超过 2.5 倍)。
本研究首次描述了从容量超负荷模型中分离的心脏成纤维细胞的“低纤维化”表型。我们的结果表明,肌动蛋白微丝稳定性和组装的生物力学调节是心脏成纤维细胞表型调节的关键介质。