Suppr超能文献

用于经济高效且高性能超级电容器的银、钯和铂纳米粒子对碳纳米纤维进行等离子体表面功能化处理

Plasma Surface Functionalization of Carbon Nanofibres with Silver, Palladium and Platinum Nanoparticles for Cost-Effective and High-Performance Supercapacitors.

作者信息

Li Zelun, Qi Shaojun, Liang Yana, Zhang Zhenxue, Li Xiaoying, Dong Hanshan

机构信息

School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK.

出版信息

Micromachines (Basel). 2018 Dec 21;10(1):2. doi: 10.3390/mi10010002.

Abstract

Due to their relatively low cost, large surface area and good chemical and physical properties, carbon nanofibers (CNFs) are attractive for the fabrication of electrodes for supercapacitors (SCs). However, their relatively low electrical conductivity has impeded their practical application. To this end, a novel active-screen plasma activation and deposition technology has been developed to deposit silver, platinum and palladium nanoparticles on activated CNFs surfaces to increase their specific surface area and electrical conductivity, thus improving the specific capacitance. The functionalised CNFs were fully characterised using scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) and their electrochemical properties were evaluated using cyclic voltammetry and electrochemical impedance spectroscopy. The results showed a significant improvement in specific capacitance, as well as electrochemical impedance over the untreated CNFs. The functionalisation of CNFs via environmental-friendly active-screen plasma technology provides a promising future for cost-effective supercapacitors with high power and energy density.

摘要

由于碳纳米纤维(CNFs)成本相对较低、表面积大且具有良好的化学和物理性质,因此在超级电容器(SCs)电极制造方面具有吸引力。然而,其相对较低的电导率阻碍了它们的实际应用。为此,已开发出一种新型的活性屏蔽等离子体活化和沉积技术,将银、铂和钯纳米颗粒沉积在活化的碳纳米纤维表面,以增加其比表面积和电导率,从而提高比电容。使用扫描电子显微镜(SEM)、能量色散X射线分析(EDX)和X射线衍射(XRD)对功能化的碳纳米纤维进行了全面表征,并使用循环伏安法和电化学阻抗谱评估了它们的电化学性质。结果表明,与未处理的碳纳米纤维相比,比电容以及电化学阻抗有显著改善。通过环境友好的活性屏蔽等离子体技术对碳纳米纤维进行功能化,为具有高功率和能量密度的经济高效超级电容器提供了广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c31d/6356825/c5b6bd6f10dd/micromachines-10-00002-g001.jpg

相似文献

2
Carbon Nanofibers Functionalized with Active Screen Plasma-Deposited Metal Nanoparticles for Electrical Energy Storage Devices.
ACS Appl Mater Interfaces. 2017 Jul 12;9(27):23195-23201. doi: 10.1021/acsami.7b05567. Epub 2017 Jun 28.
3
Electrical conductivity of silver nanoparticle doped carbon nanofibres measured by CS-AFM.
RSC Adv. 2019 Feb 5;9(8):4553-4562. doi: 10.1039/c8ra04594a. eCollection 2019 Jan 30.
6
Low temperature and cost-effective growth of vertically aligned carbon nanofibers using spin-coated polymer-stabilized palladium nanocatalysts.
Sci Technol Adv Mater. 2015 Feb 25;16(1):015007. doi: 10.1088/1468-6996/16/1/015007. eCollection 2015 Feb.
7
Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors.
ChemSusChem. 2013 Aug;6(8):1516-22. doi: 10.1002/cssc.201300095. Epub 2013 Jun 21.
8
Electrochemical Properties of Electrospun Ni Doped Carbon Nanofibers.
J Nanosci Nanotechnol. 2016 Jun;16(6):6419-24. doi: 10.1166/jnn.2016.11108.

引用本文的文献

1
Editorial for the Special Issue on Carbon Based Electronic Devices.
Micromachines (Basel). 2019 Dec 6;10(12):856. doi: 10.3390/mi10120856.

本文引用的文献

1
Towards flexible solid-state supercapacitors for smart and wearable electronics.
Chem Soc Rev. 2018 Mar 21;47(6):2065-2129. doi: 10.1039/c7cs00505a. Epub 2018 Feb 5.
3
Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices.
Small. 2016 Dec;12(45):6183-6199. doi: 10.1002/smll.201602109. Epub 2016 Oct 19.
5
Freestanding, Hydrophilic Nitrogen-Doped Carbon Foams for Highly Compressible All Solid-State Supercapacitors.
Adv Mater. 2016 Jul;28(28):5997-6002. doi: 10.1002/adma.201601125. Epub 2016 May 9.
6
Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion.
Chem Soc Rev. 2016 Jul 11;45(14):3781-810. doi: 10.1039/c5cs00472a.
7
Research opportunities to advance solar energy utilization.
Science. 2016 Jan 22;351(6271):aad1920. doi: 10.1126/science.aad1920. Epub 2016 Jan 21.
8
Nano-structured electron transporting materials for perovskite solar cells.
Nanoscale. 2016 Mar 28;8(12):6209-21. doi: 10.1039/c5nr05207f.
9
A review of electrolyte materials and compositions for electrochemical supercapacitors.
Chem Soc Rev. 2015 Nov 7;44(21):7484-539. doi: 10.1039/c5cs00303b.
10
Two dimensional nanomaterials for flexible supercapacitors.
Chem Soc Rev. 2014 May 21;43(10):3303-23. doi: 10.1039/c3cs60407a. Epub 2014 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验